MVBatch: A matlab toolbox for batch process modeling and monitoring

被引:14
作者
Gonzalez-Martinez, J. M. [1 ]
Camacho, J. [2 ]
Ferrer, A. [3 ]
机构
[1] Shell Technol Ctr Amsterdam, Shell Global Solut Int RV, POB 38000, NL-1030 BN Amsterdam, Netherlands
[2] Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain
[3] Univ Politecn Valencia, Multivariate Stat Engn Grp GIEM, Dept Appl Stat Operat Res & Qual, Camino Vera S-N,Edificio 7A, E-46022 Valencia, Spain
关键词
Batch multivariate process control; Batch synchronization; Multi-phase modeling; Principal component analysis; Monitoring; Fault diagnosis; SYNCHRONIZATION; CHARTS;
D O I
10.1016/j.chemolab.2018.11.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel user-friendly graphical interface for process understanding, monitoring and troubleshooting has been developed as a freely available MATLAB toolbox, called the MultiVariate Batch (MVBatch) Toolbox. The main contribution of this software package is the integration of recent developments in Principal Component Analysis (PCA) based Batch Multivariate Statistical Process Monitoring (BMSPM) that overcome modeling problems such as missing data, different speed of process evolution and length of batch trajectories, and multiple stages. An interactive user interface is provided, which aims to guide users in handling batch data through the main BMSPM steps: data alignment, data modeling, and the development of monitoring schemes. In addition, a small-scale non-linear dynamic simulator of the fermentation process of the Saccharomyces cerevisiae cultivation is available to generate realistic batch data under normal and abnormal operating conditions. This generator of synthetic data can be used for teaching purposes or as a benchmark to illustrate and compare the performance of new methods with sound techniques published in the field of BMSPM.
引用
收藏
页码:122 / 133
页数:12
相关论文
共 44 条
[1]  
[Anonymous], 1987, J. Chemometrics, DOI [10.1002/cem.1180010107, DOI 10.1002/CEM.1180010107]
[2]  
Arteaga F, 2009, COMPREHENSIVE CHEMOMETRICS: CHEMICAL AND BIOCHEMICAL DATA ANALYSIS, VOLS 1-4, pB285
[3]  
AspenTech, 2018, ASP PROMV
[4]   Centering and scaling in component analysis [J].
Bro, R ;
Smilde, AK .
JOURNAL OF CHEMOMETRICS, 2003, 17 (01) :16-33
[5]   The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter? [J].
Camacho, J. ;
Pico, J. ;
Ferrer, A. .
ANALYTICA CHIMICA ACTA, 2009, 642 (1-2) :59-68
[6]  
Camacho J., 2007, THESIS
[7]   Multi-phase analysis framework for handling batch process data [J].
Camacho, Jose ;
Pico, Jesus ;
Ferrer, Alberto .
JOURNAL OF CHEMOMETRICS, 2008, 22 (11-12) :632-643
[8]   Bilinear modelling of batch processes.: Part I:: theoretical discussion [J].
Camacho, Jose ;
Pico, Jesus ;
Ferrer, Alberto .
JOURNAL OF CHEMOMETRICS, 2008, 22 (5-6) :299-308
[9]   Group-Wise Principal Component Analysis for Exploratory Data Analysis [J].
Camacho, Jose ;
Rodriguez-Gomez, Rafael A. ;
Saccenti, Edoardo .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) :501-512
[10]   Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab [J].
Camacho, Jose ;
Perez-Villegas, Alejandro ;
Rodriguez-Gomez, Rafael A. ;
Jimenez-Manas, Elena .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 143 :49-57