Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review

被引:106
作者
Lou, Yuntian [1 ,2 ]
Chang, Weiwei [1 ,2 ]
Cui, Tianyu [1 ,2 ]
Wang, Jinke [1 ,2 ]
Qian, Hongchang [1 ,3 ]
Ma, Lingwei [1 ,3 ]
Hao, Xiangping [1 ,3 ]
Zhang, Dawei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Natl Mat Corros & Protect Data Ctr, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, BRI Southeast Asia Network Corros & Protect MOE, Shunde Grad Sch, Foshan 528399, Peoples R China
基金
中国国家自然科学基金;
关键词
Biofilms; Biomineralization; Quorum sensing; Biosurfactants; Microbiologically influenced corrosion inhibition; SULFATE-REDUCING BACTERIA; SURFACE-ACTIVE COMPOUNDS; CARBON-STEEL; OIL-FIELD; BDELLOVIBRIO-BACTERIOVORUS; MILD-STEEL; IRON; NITRATE; BIOFILMS; MICROORGANISMS;
D O I
10.1016/j.bioelechem.2021.107883
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbial activities can change the properties of biofilm/metal interfaces to accelerate or decelerate the corrosion of metals in a given environment. Microbiologically influenced corrosion inhibition (MICI) is the inhibition of corrosion that is directly or indirectly induced by microbial action. Compared with con-ventional methods for protection from corrosion, MICI is environmentally friendly and an emerging approach for the prevention and treatment of (bio)corrosion. However, due to the diversity of microor-ganisms and the fact that their metabolic processes are greatly complicated by environmental factors, MICI is still facing challenges for practical application. This review provides a comprehensive overview of the mechanisms of MICI under different conditions and their advantages and disadvantages for poten-tial applications in corrosion protection. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 126 条
[1]  
Adhitya I., 2019, MATER RES EXPRESS, V6
[2]   The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel [J].
AlAbbas, Faisal M. ;
Bhola, Shaily M. ;
Spear, John R. ;
Olson, David L. ;
Mishra, Brajendra .
ENGINEERING FAILURE ANALYSIS, 2013, 33 :222-235
[3]   Copper corrosion inhibition in O2-saturated H2SO4 solutions [J].
Amin, Mohammed A. ;
Khaled, K. F. .
CORROSION SCIENCE, 2010, 52 (04) :1194-1204
[4]  
Anderson G., 2003, HDB WATER WASTEWATER, P391
[5]   Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm [J].
Arachchi, Geevika J. Ganegama ;
Cridge, Andrew G. ;
Dias-Wanigasekera, Beatrice M. ;
Cruz, Cristina D. ;
McIntyre, Lynn ;
Liu, Rachel ;
Flint, Steve H. ;
Mutukumira, Anthony N. .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2013, 40 (10) :1105-1116
[6]   The use of phages for the removal of infectious biofilms [J].
Azeredo, J. ;
Sutherland, I. W. .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2008, 9 (04) :261-266
[7]   Phenotypic Variation during Biofilm Formation: Implications for Anti-Biofilm Therapeutic Design [J].
Beitelshees, Marie ;
Hill, Andrew ;
Jones, Charles H. ;
Pfeifer, Blaine A. .
MATERIALS, 2018, 11 (07)
[8]  
Ben Chekroun K, 2004, J SEDIMENT RES, V74, P868
[9]   Phage puppet masters of the marine microbial realm [J].
Breitbart, Mya ;
Bonnain, Chelsea ;
Malki, Kema ;
Sawaya, Natalie A. .
NATURE MICROBIOLOGY, 2018, 3 (07) :754-766
[10]   Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane [J].
Camara-Almiron, Jesus ;
Navarro, Yurena ;
Diaz-Martinez, Luis ;
Concepcion Magno-Perez-Bryan, Maria ;
Molina-Santiago, Carlos ;
Pearson, John R. ;
de Vicente, Antonio ;
Perez-Garcia, Alejandro ;
Romero, Diego .
NATURE COMMUNICATIONS, 2020, 11 (01)