Implementing digital computing with DNA-based switching circuits

被引:179
作者
Wang, Fei [1 ,2 ]
Lv, Hui [3 ,4 ]
Li, Qian [1 ]
Li, Jiang [3 ,5 ]
Zhang, Xueli [2 ]
Shi, Jiye [1 ]
Wang, Lihua [3 ,5 ,6 ]
Fan, Chunhai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Renji Hosp, Sch Chem & Chem Engn, Sch Med,Inst Mol Med, Shanghai 201240, Peoples R China
[2] Southern Med Univ, Affiliated Fengxian Hosp, Joint Res Ctr Precis Med Shanghai Jiao Tong Univ, Shanghai 201499, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, CAS Key Lab Interfacial Phys & Technol, Div Phys Biol, Shanghai 201800, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Shanghai Adv Res Inst, Zhangjiang Lab, Shanghai Synchrotron Radiat Facil, Shanghai 201210, Peoples R China
[6] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
STRAND-DISPLACEMENT; COMPUTATION; GATE;
D O I
10.1038/s41467-019-13980-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA strand displacement reactions (SDRs) provide a set of intelligent toolboxes for developing molecular computation. Whereas SDR-based logic gate circuits have achieved a high level of complexity, the scale-up for practical achievable computational tasks remains a hurdle. Switching circuits that were originally proposed by Shannon in 1938 and nowadays widely used in telecommunication represent an alternative and efficient means to realize fast-speed and high-bandwidth communication. Here we develop SDR-based DNA switching circuits (DSCs) for implementing digital computing. Using a routing strategy on a programmable DNA switch canvas, we show that arbitrary Boolean functions can be represented by DSCs and implemented with molecular switches with high computing speed. We further demonstrate the implementation of full-adder and square-rooting functions using DSCs, which only uses down to 1/4 DNA strands as compared with a dual-rail logic expression-based design. We expect that DSCs provide a design paradigm for digital computation with biomolecules.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Biomolecular computing systems: principles, progress and potential [J].
Benenson, Yaakov .
NATURE REVIEWS GENETICS, 2012, 13 (07) :455-468
[2]   Adaptive DNA-based materials for switching, sensing, and logic devices [J].
Campolongo, Michael J. ;
Kahn, Jason S. ;
Cheng, Wenlong ;
Yang, Dayong ;
Gupton-Campolongo, Tiffany ;
Luo, Dan .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (17) :6113-6121
[3]   Solving mazes with single-molecule DNA navigators [J].
Chao, Jie ;
Wang, Jianbang ;
Wang, Fei ;
Ouyang, Xiangyuan ;
Kopperger, Enzo ;
Liu, Huajie ;
Li, Qian ;
Shi, Jiye ;
Wang, Lihua ;
Hu, Jun ;
Wang, Lianhui ;
Huang, Wei ;
Simmel, Friedrich C. ;
Fan, Chunhai .
NATURE MATERIALS, 2019, 18 (03) :273-+
[4]  
Chatterjee G, 2017, NAT NANOTECHNOL, V12, P920, DOI [10.1038/nnano.2017.127, 10.1038/NNANO.2017.127]
[5]   Next-Generation Digital Information Storage in DNA [J].
Church, George M. ;
Gao, Yuan ;
Kosuri, Sriram .
SCIENCE, 2012, 337 (6102) :1628-1628
[6]   Modular multi-level circuits from immobilized DNA-Based logic gates [J].
Frezza, Brian M. ;
Cockroft, Scott L. ;
Ghadiri, M. Reza .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (48) :14875-14879
[7]   DNA-Based Dynamic Reaction Networks [J].
Fu, Ting ;
Lyu, Yifan ;
Liu, Hui ;
Peng, Ruizi ;
Zhang, Xiaobing ;
Ye, Mao ;
Tan, Weihong .
TRENDS IN BIOCHEMICAL SCIENCES, 2018, 43 (07) :547-560
[8]   Renewable Time-Responsive DNA Circuits [J].
Garg, Sudhanshu ;
Shah, Shalin ;
Bui, Hieu ;
Song, Tianqi ;
Mokhtar, Reem ;
Reif, John .
SMALL, 2018, 14 (33)
[9]   Versatile and Programmable DNA Logic Gates on Universal and Label-Free Homogeneous Electrochemical Platform [J].
Ge, Lei ;
Wang, Wenxiao ;
Sun, Ximei ;
Hou, Ting ;
Li, Feng .
ANALYTICAL CHEMISTRY, 2016, 88 (19) :9691-9698
[10]   Complex cellular logic computation using ribocomputing devices [J].
Green, Alexander A. ;
Kim, Jongmin ;
Ma, Duo ;
Ilver, Pamela A. S. ;
Collins, James J. ;
Yin, Peng .
NATURE, 2017, 548 (7665) :117-+