Optical-biophysical relationships of vegetation spectra without background contamination

被引:479
作者
Gao, X [1 ]
Huete, AR
Ni, WG
Miura, T
机构
[1] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA
[2] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
关键词
D O I
10.1016/S0034-4257(00)00150-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For a better evaluation of the accuracy of VIs in estimating biophysical parameters, a "true" VI value attributed only to the vegetation signal and free of any contamination is needed. In this article, pure vegetation spectra were extracted from a set of open and closed canopies by unmixing the green vegetation signal from the background component. Canopy model-simulation and reflectances derived from graph-based linear extrapolation were used to unmix and derive a "true" vegetation signal, equivalent to a perfect absorber (free boundary) canopy background reflectance condition. Optical-biophysical relationships were then derived for a variety of canopy structures with differences in foliage clumping, horizontal heterogeneity, and leaf type. A 3-dimensional canopy radiative transfer model and a hybrid geometric optical-radiative transfer model (GORT) were used to simulate the directional-hemispherical reflectances from agricultural, grassland, and forested canopies (cereal and broadleaf crop, grass, needleleaf, and broadleaf forest). The relationships of the extracted red and near-infrared reflectances and derived vegetation indices (VIs) to various biophysical parameters (leaf area index, fraction of absorbed photosynthetically active radiation, and percent ground cover) were examined for the pure vegetation spectra. The results showed normalized difference vegetation index (NDVI) relationships with biophysical parameters to become more asymptotic over the pure vegetation conditions. The extraction of pure vegetation signals had little effect on the soil-adjusted vegetation index (SAVI), which had values equivalent to those obtained with the presence of a background signal. NDVI values were fairly uniform across the different canopy types, whereas the SAVI values had pronounced differences among canopy types, particularly between the broadleaf and cereal/needleleaf structural types. These results were useful not only in selecting suitable vegetation indices to characterize specific canopy biophysical parameters, but also in understanding a "true" VI behavior, free of background noise. (C) 2000 Elsevier Science Inc.
引用
收藏
页码:609 / 620
页数:12
相关论文
共 44 条
[1]  
[Anonymous], PHOTON VEGETATION IN
[2]   Biophysical and biochemical sources of variability in canopy reflectance [J].
Asner, GP .
REMOTE SENSING OF ENVIRONMENT, 1998, 64 (03) :234-253
[3]   Variability in leaf and litter optical properties: Implications for BRDF model inversions using AVHRR, MODIS, and MISR [J].
Asner, GP ;
Wessman, CA ;
Schimel, DS ;
Archer, S .
REMOTE SENSING OF ENVIRONMENT, 1998, 63 (03) :243-257
[4]   SPATIAL HETEROGENEITY IN VEGETATION CANOPIES AND REMOTE-SENSING OF ABSORBED PHOTOSYNTHETICALLY ACTIVE RADIATION - A MODELING STUDY [J].
ASRAR, G ;
MYNENI, RB ;
CHOUDHURY, BJ .
REMOTE SENSING OF ENVIRONMENT, 1992, 41 (2-3) :85-103
[5]  
Asrar G., 1989, Theory and applications of optical remote sensing., P252
[6]   POTENTIALS AND LIMITS OF VEGETATION INDEXES FOR LAI AND APAR ASSESSMENT [J].
BARET, F ;
GUYOT, G .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :161-173
[7]   LEAF-AREA INDEX, INTERCEPTED PHOTOSYNTHETICALLY ACTIVE RADIATION, AND SPECTRAL VEGETATION INDEXES - A SENSITIVITY ANALYSIS FOR REGULAR-CLUMPED CANOPIES [J].
BEGUE, A .
REMOTE SENSING OF ENVIRONMENT, 1993, 46 (01) :45-59
[8]   Retrieving leaf area index of boreal conifer forests using landsat TM images [J].
Chen, JM ;
Cihlar, J .
REMOTE SENSING OF ENVIRONMENT, 1996, 55 (02) :153-162
[9]   EVALUATION OF HEMISPHERICAL PHOTOGRAPHY FOR DETERMINING PLANT-AREA INDEX AND GEOMETRY OF A FOREST STAND [J].
CHEN, JM ;
BLACK, TA ;
ADAMS, RS .
AGRICULTURAL AND FOREST METEOROLOGY, 1991, 56 (1-2) :129-143
[10]   Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands [J].
Chen, JM .
AGRICULTURAL AND FOREST METEOROLOGY, 1996, 80 (2-4) :135-163