Triangular Schlesinger systems and superelliptic curves

被引:1
作者
Dragovic, Vladimir [1 ,2 ]
Gontsov, Renat [3 ,4 ]
Shramchenko, Vasilisa [5 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, 800 West Campbell Rd, Richardson, TX 75080 USA
[2] Math Inst SANU, Kneza Mihaila 36, Belgrade 11000, Serbia
[3] Russian Acad Sci, MS Pinsker Lab 1, Inst Informat Transmiss Problems, Bolshoy Karetny Per 19,Build 1, Moscow 127051, Russia
[4] Moscow Power Engn Inst, Krasnokazarmennaya 14, Moscow 111250, Russia
[5] Univ Sherbrooke, Dept Math, 2500 Boul Univ, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Triangular Schlesinger systems; Superelliptic curves; Periods of differentials; Painleve VI equations; Garnier systems; Rational solutions; ISOMONODROMIC DEFORMATIONS; DIFFERENTIAL-EQUATIONS; ALGEBRAIC-SOLUTIONS; CLASSICAL-SOLUTIONS; RATIONAL SOLUTIONS; SINGULARITIES; POLYNOMIALS; POINTS;
D O I
10.1016/j.physd.2021.132947
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Schlesinger system of partial differential equations in the case when the unknown matrices of arbitrary size (pxp) are triangular and the eigenvalues of each matrix form an arithmetic progression with a rational difference q, the same for all matrices. We show that such a system possesses a family of solutions expressed via periods of meromorphic differentials on the Riemann surfaces of superelliptic curves. We determine the values of the difference q, for which our solutions lead to explicit polynomial or rational solutions of the Schlesinger system. As an application of the (2x2)-case, we obtain explicit sequences of rational solutions and of one-parameter families of rational solutions of Painleve VI equations. Using similar methods, we provide algebraic solutions of particular Garnier systems. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 56 条
[1]  
Almkvist G., 2003, 4 PARAMETRIC RATIONA
[2]  
Andrews G.E., 1999, ENCY MATH ITS APPL, V71
[3]  
[Anonymous], 1986, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
[4]  
[Anonymous], 2006, Comput. Methods Funct. Theory, DOI DOI 10.1007/BF03321618
[5]  
[Anonymous], 1999, ANN SCUOLA NORM-SCI
[6]  
[Anonymous], 1983, Progr. Math.
[7]   Rational points on Erdos-Selfridge superelliptic curves [J].
Bennett, Michael A. ;
Siksek, Samir .
COMPOSITIO MATHEMATICA, 2016, 152 (11) :2249-2254
[8]  
Bolibruch AA., 1997, J. Dynam. Control Systems, V3, P589, DOI DOI 10.1007/BF02463284
[9]   σ-functions of (n, s)-curves [J].
Bukhshtaber, VM ;
Leikin, DV ;
Enol'skii, VZ .
RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (03) :628-629
[10]  
Calligaris P., 2018, J INTEGR SYST, V3