Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposition for highly stable sodium metal batteries

被引:46
作者
Zhuang, Yanping [1 ]
Deng, Dongyuan [1 ]
Lin, Liang [1 ]
Liu, Ben [1 ]
Qu, Shasha [1 ]
Li, Saichao [1 ]
Zhang, Yinggan [1 ]
Sa, Baisheng [3 ]
Wang, Laisen [1 ]
Wei, Qiulong [1 ]
Mai, Liqiang [2 ]
Peng, Dong-Liang [1 ]
Xie, Qingshui [1 ,4 ]
机构
[1] Xiamen Univ, Coll Mat, Collaborat Innovat Ctr Chem Energy Mat, State Key Lab Phys Chem Solid Surfaces,Fujian Key, Xiamen 361005, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[3] Fuzhou Univ, Coll Mat Sci & Engn, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
[4] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient sodiophilic scaffold; Porous configuration; Bottom-up" deposition; Sodium metal anodes; Cycling performance; DENDRITE-FREE; CARBON NANOFIBERS; CURRENT COLLECTOR; NA; ANODES; HOST;
D O I
10.1016/j.nanoen.2022.107202
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium (Na) metal is considered as an appealing anode material for high-energy density Na batteries owing to its low cost, low redox potential and high theoretical capacity. However, several issues triggered by the uncontrolled Na dendrites hinder the practical applications of Na metal anodes, such as the poor cycling reversibility, short lifespan and even the unexpected safety hazard. Herein, the gradient SnO2-modified 3D carbon nanofibers (SnO2-CNFs) scaffold is fabricated, in which, the in-situ formed sodiophilic Na-Sn alloys and Na2O during initial cycle can guide Na homogeneous deposition in a "bottom-up" mode. Moreover, Na2O with excellent ionconductivity can decrease diffusion barrier to promote fast Na+ ion diffusion and uniform deposition into the scaffold. These features have positive effect on not only inhibiting dendrite growth but also improving space utilization of the 3D scaffold. As a result, the designed SnO2-CNFs electrode can maintain a high Coulombic efficiency (CE) of 99.88% after 1500 cycles (3000 h) at 3 mA cm-2 and 3 mAh cm-2. Besides, it can attain a CE of 99.68% after 400 cycles (800 h) when the current density and areal capacity increase to 5 mA cm-2 and 5 mAh cm-2. For the symmetric cell assembled by SnO2-CNFs@Na electrodes, excellent cycling performance for 1500 h at 5 mA cm-2 and 5 mAh cm-2 is displayed. Moreover, the assembled full cell using Na3V2(PO4)3@C@CNTs as cathode and SnO2-CNFs@Na as anode exhibits an outstanding capacity retention of 95.1% after 400 cycles at a large current density of 5 C, evidencing the feasible application of the designed SnO2-CNFs scaffold to realize stable Na metal anodes for advanced Na metal batteries.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Non-collapsing 3D solid-electrolyte interphase for high-rate rechargeable sodium metal batteries [J].
Tai, Zhixin ;
Liu, Yajie ;
Yu, Zhipeng ;
Lu, Ziyu ;
Bondarchuk, Olekasandr ;
Peng, Zhijian ;
Liu, Lifeng .
NANO ENERGY, 2022, 94
[32]   In situ growth Zn2GeO4 nanorods network on 3D conductive foam as free standing electrode for sodium-ion batteries [J].
Bai, Jun ;
Wang, Jing ;
Zhao, RuiRui ;
Hao, Jian ;
Chi, Caixia .
MATERIALS LETTERS, 2022, 328
[33]   3D Flower-like Tin Monosulfide/Carbon Nanocomposite Anodes for Sodium-Ion Batteries [J].
Chae, Changju ;
Jeong, Sunho .
NANOMATERIALS, 2022, 12 (08)
[34]   Structure and Interface Engineering of Ultrahigh-Rate 3D Bismuth Anodes for Sodium-Ion Batteries [J].
Zhang, Xiaoshan ;
Qiu, Xueqing ;
Lin, Jinxin ;
Lin, Zehua ;
Sun, Shirong ;
Yin, Jian ;
Alshareef, Husam N. N. ;
Zhang, Wenli .
SMALL, 2023, 19 (35)
[35]   In situ reconstructed dual-functional interfacial layer induced by spontaneous vanadium fluoride reaction for highly stable sodium metal batteries [J].
Li, Yue ;
Xu, Kang ;
Hu, Weijiang ;
Huang, Ziling ;
Li, Qing ;
Cao, Liang ;
Shi, Minjie ;
Wang, Zhefei ;
Wei, Huaixin ;
Yang, Jun .
CHEMICAL ENGINEERING JOURNAL, 2025, 513
[36]   A 3D Hydroxylated MXene/Carbon Nanotubes Composite as a Scaffold for Dendrite-Free Sodium-Metal Electrodes [J].
He, Xin ;
Jin, Song ;
Miao, Licheng ;
Cai, Yichao ;
Hou, Yunpeng ;
Li, Haixia ;
Zhang, Kai ;
Yan, Zhenhua ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (38) :16705-16711
[37]   A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anode-Free Sodium-Metal Batteries [J].
Lee, Kyungbin ;
Lee, Young Jun ;
Lee, Michael J. ;
Han, Junghun ;
Lim, Jeonghoon ;
Ryu, Kun ;
Yoon, Hana ;
Kim, Byung-Hyun ;
Kim, Bumjoon J. ;
Lee, Seung Woo .
ADVANCED MATERIALS, 2022, 34 (14)
[38]   Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries [J].
Zhao, Zhi-Hao ;
Hu, Xu-Dong ;
Wang, Hongqiang ;
Ye, Meng-Yang ;
Sang, Zhi-Yuan ;
Ji, Hui-Ming ;
Li, Xiao-Lei ;
Dai, Yejing .
NANO ENERGY, 2018, 48 :526-535
[39]   Spatially restricted deposition of Zn metal in localized-activation 3D electrode enables long-term stable zinc ion batteries [J].
Zhang, Minggang ;
Deng, Yifan ;
Yan, Yuekai ;
Mei, Hui ;
Cheng, Laifei ;
Zhang, Litong .
ENERGY STORAGE MATERIALS, 2024, 65
[40]   3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode [J].
Liu, Ben ;
Lei, Danni ;
Wang, Jin ;
Zhang, Qingfei ;
Zhang, Yinggan ;
He, Wei ;
Zheng, Hongfei ;
Sa, Baisheng ;
Xie, Qingshui ;
Peng, Dong-Liang ;
Qu, Baihua .
NANO RESEARCH, 2020, 13 (08) :2136-2142