Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposition for highly stable sodium metal batteries

被引:46
作者
Zhuang, Yanping [1 ]
Deng, Dongyuan [1 ]
Lin, Liang [1 ]
Liu, Ben [1 ]
Qu, Shasha [1 ]
Li, Saichao [1 ]
Zhang, Yinggan [1 ]
Sa, Baisheng [3 ]
Wang, Laisen [1 ]
Wei, Qiulong [1 ]
Mai, Liqiang [2 ]
Peng, Dong-Liang [1 ]
Xie, Qingshui [1 ,4 ]
机构
[1] Xiamen Univ, Coll Mat, Collaborat Innovat Ctr Chem Energy Mat, State Key Lab Phys Chem Solid Surfaces,Fujian Key, Xiamen 361005, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[3] Fuzhou Univ, Coll Mat Sci & Engn, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
[4] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient sodiophilic scaffold; Porous configuration; Bottom-up" deposition; Sodium metal anodes; Cycling performance; DENDRITE-FREE; CARBON NANOFIBERS; CURRENT COLLECTOR; NA; ANODES; HOST;
D O I
10.1016/j.nanoen.2022.107202
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium (Na) metal is considered as an appealing anode material for high-energy density Na batteries owing to its low cost, low redox potential and high theoretical capacity. However, several issues triggered by the uncontrolled Na dendrites hinder the practical applications of Na metal anodes, such as the poor cycling reversibility, short lifespan and even the unexpected safety hazard. Herein, the gradient SnO2-modified 3D carbon nanofibers (SnO2-CNFs) scaffold is fabricated, in which, the in-situ formed sodiophilic Na-Sn alloys and Na2O during initial cycle can guide Na homogeneous deposition in a "bottom-up" mode. Moreover, Na2O with excellent ionconductivity can decrease diffusion barrier to promote fast Na+ ion diffusion and uniform deposition into the scaffold. These features have positive effect on not only inhibiting dendrite growth but also improving space utilization of the 3D scaffold. As a result, the designed SnO2-CNFs electrode can maintain a high Coulombic efficiency (CE) of 99.88% after 1500 cycles (3000 h) at 3 mA cm-2 and 3 mAh cm-2. Besides, it can attain a CE of 99.68% after 400 cycles (800 h) when the current density and areal capacity increase to 5 mA cm-2 and 5 mAh cm-2. For the symmetric cell assembled by SnO2-CNFs@Na electrodes, excellent cycling performance for 1500 h at 5 mA cm-2 and 5 mAh cm-2 is displayed. Moreover, the assembled full cell using Na3V2(PO4)3@C@CNTs as cathode and SnO2-CNFs@Na as anode exhibits an outstanding capacity retention of 95.1% after 400 cycles at a large current density of 5 C, evidencing the feasible application of the designed SnO2-CNFs scaffold to realize stable Na metal anodes for advanced Na metal batteries.
引用
收藏
页数:13
相关论文
共 50 条
[21]   3D Sodiophilic Ti3C2 MXene@g-C3N4 Hetero-Interphase Raises the Stability of Sodium Metal Anodes [J].
Bao, Changyuan ;
Wang, Junhui ;
Wang, Bo ;
Sun, Jianguo ;
He, Linchun ;
Pan, Zhenghui ;
Jiang, Yunpeng ;
Wang, Dianlong ;
Liu, Ximeng ;
Dou, Shi Xue ;
Wang, John .
ACS NANO, 2022, 16 (10) :17197-17209
[22]   Synergistic Regulation of Sodium Metal Deposition Pattern Through Three-Dimensional Sodiophilic Gradient ZnO/Fe0.7Co0.3 Frameworks and Magnetic Fields for High-Performance Sodium Metal Batteries [J].
Wang, Yunfei ;
Wang, Yuanhao ;
Sun, Xiang ;
Yang, Wenhua ;
Xu, Jie ;
Cao, Derang ;
Li, Shandong ;
Wang, Xia .
CHEMSUSCHEM, 2025, 18 (02)
[23]   Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework [J].
Yang, Chunpeng ;
Zhang, Lei ;
Liu, Boyang ;
Xu, Shaomao ;
Hamann, Tanner ;
McOwen, Dennis ;
Dai, Jiaqi ;
Luo, Wei ;
Gong, Yunhui ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (15) :3770-3775
[24]   Tuning charge transfer and ion diffusion in 3D nanotubular arrays by engineering vacancy and implanting sodiophilic seeds for dendrite-free sodium metal anodes [J].
Li, Yulei ;
Zhang, Xiaofei ;
Wang, Tongzhen ;
Yang, Jie ;
Cui, Jiewu ;
Yan, Jian ;
Liu, Jiaqin ;
Tan, Hark Hoe ;
Yu, Yan ;
Wu, Yucheng .
JOURNAL OF POWER SOURCES, 2024, 602
[25]   In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries [J].
Kim, Yonghwan ;
Kim, Dohyeong ;
Bae, Minjun ;
Chang, Yujin ;
An, Won Young ;
Hong, Hwichan ;
Hwang, Seon Jae ;
Kim, Dongwan ;
Lee, Jeongyeon ;
Piao, Yuanzhe .
ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (03)
[26]   A robust 3D nanostructured composite polymer electrolyte with novel dual-ion channels toward solid-state sodium metal batteries [J].
Cui, Yunlong ;
Zhang, Pengyu ;
Tian, Yuan ;
Wang, Cheng ;
Wang, Su ;
Zhang, Yan ;
Shi, Xixi ;
Ma, Yue ;
Song, Dawei ;
Zhang, Hongzhou ;
Liu, Kai ;
Zhang, Na ;
Zhang, Lianqi .
CHEMICAL ENGINEERING JOURNAL, 2024, 498
[27]   3D-Printed Hierarchically Microgrid Frameworks of Sodiophilic Co3O4@C/rGO Nanosheets for Ultralong Cyclic Sodium Metal Batteries [J].
Bai, Wanlong ;
Wang, Hui ;
Min, Dong Hyun ;
Miao, Jingzhong ;
Li, Beiming ;
Xu, Tingting ;
Kong, Dezhi ;
Li, Xinjian ;
Yu, Xu ;
Wang, Ye ;
Park, Ho Seok .
ADVANCED SCIENCE, 2024, 11 (35)
[28]   3D Sb-Based Composite Framework with Gradient Sodiophilicity for Ultrastable Sodium Metal Anodes [J].
Li, Zhaopeng ;
Qin, Hongye ;
Tian, Wenyue ;
Miao, Licheng ;
Cao, Kangzhe ;
Si, Yuchang ;
Li, Haixia ;
Wang, Qinglun ;
Jiao, Lifang .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (05)
[29]   3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode [J].
Zheng, Hongfei ;
Zhang, Qingfei ;
Chen, Qiulin ;
Xu, Wanjie ;
Xie, Qingshui ;
Cai, Yuxin ;
Ma, Yating ;
Qiao, Zhensong ;
Luo, Qing ;
Lin, Jie ;
Wang, Laisen ;
Qu, Baihua ;
Sa, Baisheng ;
Peng, Dong-Liang .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) :313-322
[30]   Recent developments on layered 3d-transtition metal oxide cathode materials for sodium -ion batteries [J].
Palaniyandy, Nithyadharseni .
CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 :319-326