Semi-supervised machine learning approach for unknown malicious software detection

被引:0
作者
Bisio, Federica [1 ]
Gastaldo, Paolo [1 ]
Zunino, Rodolfo [1 ]
Decherchi, Sergio [2 ]
机构
[1] Univ Genoa, Polytech Sch, DITEN, Genoa, Italy
[2] Ist Italiano Tecn, Dept Drug Discovery & Dev Fondazione, Genoa, Italy
来源
2014 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA 2014) | 2014年
关键词
semi-supervised; SVM; biased regularization; malware detection; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inductive bias represents an important factor in learning theory, as it can shape the generalization properties of a learning machine. This paper shows that biased regularization can be used as inductive bias to effectively tackle the semi-supervised classification problem. Thus, semi-supervised learning is formalized as a supervised learning problem biased by an unsupervised reference solution. The proposed framework has been tested on a malware-detection problem. Experimental results confirmed the effectiveness of the semi-supervised methodology presented in this paper.
引用
收藏
页码:52 / 59
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 2006, BOOK REV IEEE T NEUR
[2]  
Bailey M, 2007, LECT NOTES COMPUT SC, V4637, P178
[3]  
Bartlett PL, 1997, ADV NEUR IN, V9, P134
[4]  
Bayer U., 2009, P NETWORK DISTRIBUTE
[5]   Semantics-aware malware detection [J].
Christodorescu, M ;
Jha, S ;
Seshia, SA ;
Song, D ;
Bryant, RE .
2005 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, PROCEEDINGS, 2005, :32-46
[6]  
Fan RE, 2008, J MACH LEARN RES, V9, P1871
[7]  
Hoi CH, 2004, IEEE IJCNN, P3189
[8]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501
[9]  
Kang D., 2005, 6 IEEE SYST MAN CYB
[10]  
Kienzle W., 2006, P 23 INT C MACH LEAR