Copper thin films deposited using different ion acceleration strategies in HiPIMS

被引:27
作者
Viloan, Rommel Paulo B. [1 ]
Helmersson, Ulf [1 ]
Lundin, Daniel [1 ,2 ]
机构
[1] Linkoping Univ, Dept Phys, Plasma & Coatings Div, SE-58183 Linkoping, Sweden
[2] Univ Paris Saclay, Unite Mixte Rech 8578, Lab Phys Gaz & Plasmas LPGP, CNRS, F-91405 Orsay, France
基金
瑞典研究理事会;
关键词
HiPIMS; Bipolar HiPIMS; Synchronized bias; Copper; Ion current; Ion acceleration; EPITAXIAL-GROWTH; BIAS VOLTAGE; MAGNETRON; BOMBARDMENT; STRESS; MICROSTRUCTURE; SILICON; TECHNOLOGY; BEAM; FLUX;
D O I
10.1016/j.surfcoat.2021.127487
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The growth of Cu thin films by low-energy ion-bombardment using bipolar and conventional HiPIMS pulse configurations to the target in combination with different biasing methods of the substrate were investigated. For bipolar HiPIMS with a substrate at floating potential, XRD measurements indicate minimal ion acceleration and change in the crystal growth when increasing the substrate holder potential to the same level as the applied positive voltage. In contrast, using bipolar HiPIMS with a substrate at ground potential results in a similar ion current profile as in conventional HiPIMS with a synchronized pulsed bias with the same delay and timing as the positive pulse. Furthermore, the trend in crystal growth is the same such that a significant increase in the (200) intensity is observed within an ion acceleration window, 125-175 V. Using conventional HiPIMS with a continuous DC bias also results in Cu films exhibiting significant (200) peaks, but the ion acceleration window is shifted to 175-225 V. The observed differences in the film growth could be explained not only by the energy of the ions but also by the type of ions (working gas vs metal ions) that are accelerated during either the positive pulse or substrate biasing.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Review Article: Stress in thin films and coatings: Current status, challenges, and prospects [J].
Abadias, Gregory ;
Chason, Eric ;
Keckes, Jozef ;
Sebastiani, Marco ;
Thompson, Gregory B. ;
Barthel, Etienne ;
Doll, Gary L. ;
Murray, Conal E. ;
Stoessel, Chris H. ;
Martinu, Ludvik .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02)
[2]   Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering [J].
Alami, J. ;
Eklund, P. ;
Andersson, J. M. ;
Lattemann, M. ;
Wallin, E. ;
Bohlmark, J. ;
Persson, P. ;
Helmersson, U. .
THIN SOLID FILMS, 2007, 515 (7-8) :3434-3438
[3]   The role of energetic ion bombardment during growth of TiO2 thin films by reactive sputtering [J].
Amin, A. ;
Koehl, D. ;
Wuttig, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (40)
[4]   Improved film density for coatings at grazing angle of incidence in high power impulse magnetron sputtering with positive pulse [J].
Avino, F. ;
Fonnesu, D. ;
Koettig, T. ;
Bonura, M. ;
Senatore, C. ;
Fontenla, A. T. Perez ;
Sublet, A. ;
Taborelli, M. .
THIN SOLID FILMS, 2020, 706
[5]   Evidence of ion energy distribution shift in HiPIMS plasmas with positive pulse [J].
Avino, F. ;
Sublet, A. ;
Taborelli, M. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (01)
[6]   Effect of positive pulse voltage in bipolar reactive HiPIMS on crystal structure, microstructure and mechanical properties of CrN films [J].
Batkova, S. ;
Capek, J. ;
Rezek, J. ;
Cerstvy, R. ;
Zeman, P. .
SURFACE & COATINGS TECHNOLOGY, 2020, 393
[7]  
Birkholz M, 2006, THIN FILM ANALYSIS BY X-RAY SCATTERING, P1
[8]   The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge [J].
Bohlmark, J. ;
Lattemann, M. ;
Gudmundsson, J. T. ;
Ehiasarian, A. P. ;
Gonzalvo, Y. Aranda ;
Brenning, N. ;
Helmersson, U. .
THIN SOLID FILMS, 2006, 515 (04) :1522-1526
[9]   A study of the transient plasma potential in a pulsed bi-polar dc magnetron discharge [J].
Bradley, JW ;
Karkari, SK ;
Vetushka, A .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2004, 13 (02) :189-198
[10]   Ion density evolution in a high-power sputtering discharge with bipolar pulsing [J].
Britun, N. ;
Michiels, M. ;
Godfroid, T. ;
Snyders, R. .
APPLIED PHYSICS LETTERS, 2018, 112 (23)