The two-prime hypothesis: groups whose nonabelian composition factors are not isomorphic to PSL2(q)

被引:0
作者
Lewis, Mark L. [1 ]
Liu, Yanjun [2 ]
Tong-Viet, Hung P. [1 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 184卷 / 01期
关键词
Character degrees; Prime divisors;
D O I
10.1007/s00605-016-0954-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, and write cd(G) for the degree set of the complex irreducible characters of G. The group G is said to satisfy the two-prime hypothesis if, for any distinct degrees a, b is an element of cd(G), the total number of (not necessarily different) primes of the greatest common divisor gcd(a, b) is at most 2. In this paper, we give an upper bound on the number of irreducible character degrees of nonsolvable groups satisfying the two-prime hypothesis and without composition factors isomorphic to PSL2(q) for any prime power q.
引用
收藏
页码:115 / 131
页数:17
相关论文
共 8 条
[1]  
Conway J. H., 1985, COMPUTATIONAL ASSIST
[2]  
GAP, 2015, GAP GROUPS ALG PROGR
[3]   Solvable groups satisfying the two-prime hypothesis, part I [J].
Hamblin, James .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (01) :1-24
[4]   Solvable Groups Satisfying the Two-Prime Hypothesis II [J].
Hamblin, James ;
Lewis, Mark L. .
ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (06) :1099-1130
[5]   A reduction theorem for the McKay conjecture [J].
Isaacs, I. M. ;
Malle, Gunter ;
Navarro, Gabriel .
INVENTIONES MATHEMATICAE, 2007, 170 (01) :33-101
[6]  
Isaacs I. M., 2006, CHARACTER THEORY FIN
[7]   Simple groups and the two-prime hypothesis [J].
Lewis, Mark L. ;
Liu, Yanjun .
MONATSHEFTE FUR MATHEMATIK, 2016, 181 (04) :855-867
[8]  
Palfy P. P., 1998, PERIOD MATH HUNG, V36, P61