Nonlinear gyrofluid simulations of collisionless reconnection

被引:24
作者
Grasso, D. [1 ,2 ]
Tassi, E. [3 ]
Waelbroeck, F. L. [4 ]
机构
[1] CNR, Ist Sistemi Complessi, I-00185 Rome, Italy
[2] Politecn Torino, Dipartimento Energet, I-10129 Turin, Italy
[3] Aix Marseille Univ, CNRS, Ctr Phys Theor, F-13288 Marseille 09, France
[4] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
关键词
D O I
10.1063/1.3475440
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Hamiltonian gyrofluid model recently derived by Waelbroeck et al. [Phys. Plasmas 16, 032109 (2009)] is used to investigate nonlinear collisionless reconnection with a strong guide field by means of numerical simulations. Finite ion Larmor radius gives rise to a cascade of the electrostatic potential to scales below both the ion gyroradius and the electron skin depth. This cascade is similar to that observed previously for the density and current in models with cold ions. In addition to density cavities, the cascades create electron beams at scales below the ion gyroradius. The presence of finite ion temperature is seen to modify, inside the magnetic island, the distribution of the velocity fields that advect two Lagrangian invariants of the system. As a consequence, the fine structure in the electron density is confined to a layer surrounding the separatrix. Finite ion Larmor radius effects produce also a different partition between the electron thermal, potential, and kinetic energy, with respect to the cold-ion case. Other aspects of the dynamics such as the reconnection rate and the stability against Kelvin-Helmholtz modes are similar to simulations with finite electron compressibility but cold ions. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3475440]
引用
收藏
页数:8
相关论文
共 33 条
[1]   A gyrofluid description of Alfvenic turbulence and its parallel electric field [J].
Bian, N. H. ;
Kontar, E. P. .
PHYSICS OF PLASMAS, 2010, 17 (06)
[2]  
Birn J, 2001, J GEOPHYS RES-SPACE, V106, P3715, DOI 10.1029/1999JA900449
[3]   NONLINEAR GYROFLUID DESCRIPTION OF TURBULENT MAGNETIZED PLASMAS [J].
BRIZARD, A .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (05) :1213-1228
[4]   Invariants and geometric structures in nonlinear Hamiltonian magnetic reconnection [J].
Cafaro, E ;
Grasso, D ;
Pegoraro, F ;
Porcelli, F ;
Saluzzi, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (20) :4430-4433
[5]   Fast reconnection in nonrelativistic 2D electron-positron plasmas [J].
Chacon, L. ;
Simakov, Andrei N. ;
Lukin, V. S. ;
Zocco, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[6]   Current layer cascade in collisionless electron-magnetohydrodynamic reconnection and electron compressibility effects [J].
Del Sarto, D ;
Califano, F ;
Pegoraro, F .
PHYSICS OF PLASMAS, 2005, 12 (01) :1-8
[7]   Secondary instabilities and vortex formation in collisionless-fluid magnetic reconnection [J].
Del Sarto, D ;
Califano, F ;
Pegoraro, F .
PHYSICAL REVIEW LETTERS, 2003, 91 (23) :2350011-2350014
[8]   Electron parallel compressibility in the nonlinear development of two-dimensional collisionless magnetohydrodynamic reconnection [J].
Del Sarto, Daniele ;
Califano, F. ;
Pegoraro, F. .
MODERN PHYSICS LETTERS B, 2006, 20 (16) :931-961
[9]   A MAGNETIC RECONNECTION MECHANISM FOR ION ACCELERATION AND ABUNDANCE ENHANCEMENTS IN IMPULSIVE FLARES [J].
Drake, J. F. ;
Cassak, P. A. ;
Shay, M. A. ;
Swisdak, M. ;
Quataert, E. .
ASTROPHYSICAL JOURNAL LETTERS, 2009, 700 (01) :L16-L20
[10]   Production of energetic electrons during magnetic reconnection [J].
Drake, JF ;
Shay, MA ;
Thongthai, W ;
Swisdak, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (09)