Hypothesis testing in semiparametric additive mixed models

被引:98
作者
Zhang, DW [1 ]
Lin, XH
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
关键词
equivalence test; goodness of fit; longitudinal data; mixed models; nonparametric regression; polynomial test; score test; variance components;
D O I
10.1093/biostatistics/4.1.57
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider testing whether the nonparametric function in a semiparametric additive mixed model is a simple fixed degree polynomial, for example, a simple linear function. This test provides a goodness-of-fit test for checking parametric models against nonparametric models. It is based on the mixed-model representation of the smoothing spline estimator of the nonparametric function and the variance component score test by treating the inverse of the smoothing parameter as an extra variance component. We also consider testing the equivalence of two nonparametric functions in semiparametric additive mixed models for two groups, such as treatment and placebo groups. The proposed tests are applied to data from an epidemiological study and a clinical trial and their performance is evaluated through simulations.
引用
收藏
页码:57 / 74
页数:18
相关论文
共 50 条
  • [41] Checking a Semiparametric Additive Risk Model
    Axel Gandy
    Uwe Jensen
    Lifetime Data Analysis, 2005, 11 : 451 - 472
  • [42] Variance Components Testing in ANOVA-Type Mixed Models
    Li, Zaixing
    Chen, Fei
    Zhu, Lixing
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (02) : 482 - 496
  • [43] Likelihood and conditional likelihood inference for generalized additive mixed models for clustered data
    Zhang, DW
    Davidian, M
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) : 90 - 106
  • [44] SEMIPARAMETRIC MULTINOMIAL MIXED-EFFECTS MODELS: A UNIVERSITY STUDENTS PROFILING TOOL
    Masci, Chiara
    Ieva, Francesca
    Paganoni, Anna Maria
    ANNALS OF APPLIED STATISTICS, 2022, 16 (03) : 1608 - 1632
  • [45] Score-Based Hypothesis Testing for Unnormalized Models
    Wu, Suya
    Diao, Enmao
    Elkhalil, Khalil
    Ding, Jie
    Tarokh, Vahid
    IEEE ACCESS, 2022, 10 : 71936 - 71950
  • [46] Semiparametric regression of multidimensional genetic pathway data: Least-squares kernel machines and linear mixed models
    Liu, Dawei
    Lin, Xihong
    Ghosh, Debashis
    BIOMETRICS, 2007, 63 (04) : 1079 - 1088
  • [47] Smooth additive mixed models for predicting aboveground biomass
    Sanchez-Gonzalez, Mariola
    Durban, Maria
    Lee, Dae-Jin
    Canellas, Isabel
    Sixto, Hortensia
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2017, 22 (01) : 23 - 41
  • [48] Smooth additive mixed models for predicting aboveground biomass
    Mariola Sánchez-González
    María Durbán
    Dae-Jin Lee
    Isabel Cañellas
    Hortensia Sixto
    Journal of Agricultural, Biological and Environmental Statistics, 2017, 22 : 23 - 41
  • [49] Modelling Mixed Types of Outcomes in Additive Genetic Models
    Bonat, Wagner Hugo
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2017, 13 (02)
  • [50] Semiparametric and additive model selection using an improved Akaike information criterion
    Simonoff, JS
    Tsai, CL
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (01) : 22 - 40