Uncertainty Distribution of Crystal Structure Prediction

被引:6
作者
Abramov, Yuriy A. [2 ,3 ]
Li, Bochen [1 ]
Chang, Chao [1 ]
Zeng, Qun [1 ]
Sun, Guangxu [1 ]
Gobbo, Gianpaolo [2 ]
机构
[1] Shenzhen Jingtai Technol Co Ltd, XtalPi Inc, Shenzhen, Peoples R China
[2] XtalPi Inc, Cambridge, MA 02142 USA
[3] Univ N Carolina, Eshelman Sch Pharm, Chapel Hill, NC 27515 USA
关键词
MOLECULAR-CRYSTALS; INTERACTION ENERGIES; LATTICE ENERGIES; THERMOCHEMISTRY; APPROXIMATION; BEHAVIOR; DATABASE; FORCE;
D O I
10.1021/acs.cgd.1c00527
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The modern crystal structure prediction (CSP) technologies have proven to be accurate enough to provide a valuable support for a stable form selection in the pharmaceutical industry. We demonstrate that successful applications of the CSP predictions, in part, may be accounted for by favorable uncertainty distribution with the smallest absolute errors in the low relative crystal energy region. Such behavior is dictated by the lowest contribution of the systematic scaling error of dispersion-corrected density functional theory (DFT-D) approaches in this region. These considerations are validated by benchmarking studies of selected popular DFT-D approaches relative to post-Hartree-Fock (post-HF) calculations for representative molecular dimeric configurations in the virtual crystalline states of four pharmaceutical compounds. In addition, discussed are uncertainty distributions of DFT-D predictions of relative energies of eight ROY and five oxalyl dihydrazide (ODH) polymorphs relative to MP2D/HMBI and CCSD(T)/HMBI predictions, respectively.
引用
收藏
页码:5496 / 5502
页数:7
相关论文
共 53 条
[1]  
Abramov Y.A., 2019, Chem. Eng. Pharm. Ind, P519, DOI [10.1002/9781119600800.ch23, DOI 10.1002/9781119600800.CH23]
[2]  
Abramov Y.A., 2016, Computational Pharmaceutical Solid State Chemistry, V1st
[3]   Solid-Form Transition Temperature Prediction from a Virtual Polymorph Screening: A Reality Check [J].
Abramov, Yuriy ;
Sun, Guangxu ;
Zhou, Yunfei ;
Yang, Mingjun ;
Zeng, Qiao ;
Shen, Zhe .
CRYSTAL GROWTH & DESIGN, 2019, 19 (12) :7132-7137
[4]   Computational Insights into Kinetic Hindrance Affecting Crystallization of Stable Forms of Active Pharmaceutical Ingredients [J].
Abramov, Yuriy A. ;
Zhang, Peiyu ;
Zeng, Qiao ;
Yang, Mingjun ;
Liu, Yang ;
Sekharan, Sivakumar .
CRYSTAL GROWTH & DESIGN, 2020, 20 (03) :1512-1525
[5]   Current Computational Approaches to Support Pharmaceutical Solid Form Selection [J].
Abramov, Yuriy A. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2013, 17 (03) :472-485
[6]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[7]   ON THE LARGE-GRADIENT BEHAVIOR OF THE DENSITY FUNCTIONAL EXCHANGE ENERGY [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (12) :7184-7187
[8]   Predicting Organic Crystal Lattice Energies with Chemical Accuracy [J].
Beran, Gregory J. O. ;
Nanda, Kaushik .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24) :3480-3487
[9]   A Prolific Solvate Former, Galunisertib, under the Pressure of Crystal Structure Prediction, Produces Ten Diverse Polymorphs [J].
Bhardwaj, Rajni M. ;
McMahon, Jennifer A. ;
Nyman, Jonas ;
Price, Louise S. ;
Konar, Sumit ;
Oswald, Iain D. H. ;
Pulham, Colin R. ;
Price, Sarah L. ;
Reutzel-Edens, Susan M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (35) :13887-13897
[10]   The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory [J].
Brauer, Brina ;
Kesharwani, Manoj K. ;
Kozuch, Sebastian ;
Martin, Jan M. L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (31) :20905-20925