The giant electrorheological effect in suspensions of nanoparticles

被引:538
|
作者
Wen, WJ
Huang, XX
Yang, SH
Lu, KQ
Sheng, P
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Inst Nano Sci & Technol, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China
关键词
D O I
10.1038/nmat993
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrorheology (ER) denotes the control of a material's flow properties (rheology) through an electric field(1-10). We have fabricated electrorheological suspensions of coated nanoparticles that show electrically controllable liquid-solid transitions. The solid state can reach a yield strength of 130 kPa, breaking the theoretical upper bound on conventional ER static yield stress that is derived on the general assumption that the dielectric and conductive responses of the component materials are linear. In this giant electrorheological (GER) effect, the static yield stress displays near-linear dependence on the electric field, in contrast to the quadratic variation usually observed(11-16). Our GER suspensions show low current density over a wide temperature range of 10-120degreesC, with a reversible response time of <10 ms. Finite-element simulations, based on the model of saturation surface polarization in the contact regions of neighbouring particles, yield predictions in excellent agreement with experiment.
引用
收藏
页码:727 / 730
页数:4
相关论文
共 50 条
  • [1] The giant electrorheological effect in suspensions of nanoparticles
    Weijia Wen
    Xianxiang Huang
    Shihe Yang
    Kunquan Lu
    Ping Sheng
    Nature Materials, 2003, 2 : 727 - 730
  • [2] Electrorheological Effect of Suspensions of Polyaniline Nanoparticles with Different Morphologies
    Yuan, Jinhua
    Hu, Xufeng
    Zhao, Xiaopeng
    Yin, Jianbo
    POLYMERS, 2023, 15 (23)
  • [3] Electrorheological properties of polyimide nanoparticles suspensions
    Danilin, Alexander
    Kydralieva, Kamila
    Semenov, Nikolay
    Kelbysheva, Elena
    MATERIALS TODAY-PROCEEDINGS, 2021, 34 : 239 - 242
  • [4] Electrorheological effect in activated suspensions
    Korobko, E.V.
    Mokeev, A.A.
    Journal of Intelligent Material Systems and Structures, 1991, 2 (01) : 25 - 37
  • [5] Electrorheological effect in suspensions of polyaniline
    Gozdalik, A
    Wycislik, H
    Plocharski, J
    SYNTHETIC METALS, 2000, 109 (1-3) : 147 - 150
  • [6] Electrorheological effect in suspensions of conductive polymers
    Plocharski, J
    Rózanski, M
    Wycislik, H
    SYNTHETIC METALS, 1999, 102 (1-3) : 1354 - 1357
  • [7] Electrorheological effect in suspensions of conductive polymers
    Plocharski, J.
    Rozanski, M.
    Wycislik, H.
    Synthetic Metals, 1999, 102 (1 -3 pt 2): : 1354 - 1357
  • [8] Mechanisms of the giant electrorheological effect
    Huang, Xianxiang
    Wen, Weijia
    Yang, Shihe
    Sheng, Ping
    SOLID STATE COMMUNICATIONS, 2006, 139 (11-12) : 581 - 588
  • [9] Mechanism of the giant electrorheological effect
    Sheng, P
    Electrorheological Fluids and Magnetorheological Suspensions (ERMR 2004), Proceedings, 2005, : 143 - 148
  • [10] Mechanism of the giant electrorheological effect
    Sheng, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (7-9): : 1157 - 1162