Downscaling atmospheric chemistry simulations with physically consistent deep learning

被引:10
作者
Geiss, Andrew [1 ]
Silva, Sam J. [1 ,2 ]
Hardin, Joseph C. [1 ,3 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[2] Univ Southern Calif, Los Angeles, CA 90007 USA
[3] ClimateAi Inc, San Francisco, CA USA
关键词
SUPERRESOLUTION;
D O I
10.5194/gmd-15-6677-2022
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Recent advances in deep convolutional neural network (CNN)-based super resolution can be used to downscale atmospheric chemistry simulations with substantially higher accuracy than conventional downscaling methods. This work both demonstrates the downscaling capabilities of modern CNN-based single image super resolution and video super-resolution schemes and develops modifications to these schemes to ensure they are appropriate for use with physical science data. The CNN-based video super-resolution schemes in particular incur only 39 % to 54 % of the grid-cell-level error of interpolation schemes and generate outputs with extremely realistic small-scale variability based on multiple perceptual quality metrics while performing a large (8 x 10) increase in resolution in the spatial dimensions. Methods are introduced to strictly enforce physical conservation laws within CNNs, perform large and asymmetric resolution changes between common model grid resolutions, account for non-uniform grid-cell areas, super-resolve lognormally distributed datasets, and leverage additional inputs such as high-resolution climatologies and model state variables. High-resolution chemistry simulations are critical for modeling regional air quality and for understanding future climate, and CNN-based downscaling has the potential to generate these high-resolution simulations and ensembles at a fraction of the computational cost.
引用
收藏
页码:6677 / 6694
页数:18
相关论文
共 60 条
[1]   Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space? [J].
Abdal, Rameen ;
Qin, Yipeng ;
Wonka, Peter .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4431-4440
[2]  
[Anonymous], 2016, The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow, DOI DOI 10.17226/23573
[3]   Configuration and intercomparison of deep learning neural models for statistical downscaling [J].
Bano-Medina, Jorge ;
Manzanas, Rodrigo ;
Manuel Gutierrez, Jose .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (04) :2109-2124
[4]   Channel Attention Networks [J].
Bastidas, Alexei A. ;
Tang, Hanlin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :881-888
[5]   Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment [J].
Bedia, Joaquin ;
Bano-Medina, Jorge ;
Legasa, Mikel N. ;
Iturbide, Maialen ;
Manzanas, Rodrigo ;
Herrera, Sixto ;
Casanueva, Ana ;
San-Martin, Daniel ;
Cofino, Antonio S. ;
Manuel Gutierrez, Jose .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (03) :1711-1735
[6]   Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems [J].
Beucler, Tom ;
Pritchard, Michael ;
Rasp, Stephan ;
Ott, Jordan ;
Baldi, Pierre ;
Gentine, Pierre .
PHYSICAL REVIEW LETTERS, 2021, 126 (09)
[7]   Outlook for Exploiting Artificial Intelligence in the Earth and Environmental Sciences [J].
Boukabara, Sid-Ahmed ;
Krasnopolsky, Vladimir ;
Penny, Stephen G. ;
Stewart, Jebb Q. ;
McGovern, Amy ;
Hall, David ;
Ten Hoeve, John E. ;
Hickey, Jason ;
Allen Huang, Hung-Lung ;
Williams, John K. ;
Ide, Kayo ;
Tissot, Philippe ;
Haupt, Sue Ellen ;
Casey, Kenneth S. ;
Oza, Nikunj ;
Geer, Alan J. ;
Maddy, Eric S. ;
Hoffman, Ross N. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2021, 102 (05) :E1016-E1032
[8]   Dry Deposition of Ozone Over Land: Processes, Measurement, and Modeling [J].
Clifton, Olivia E. ;
Fiore, Arlene M. ;
Massman, William J. ;
Baublitz, Colleen B. ;
Coyle, Mhairi ;
Emberson, Lisa ;
Fares, Silvano ;
Farmer, Delphine K. ;
Gentine, Pierre ;
Gerosa, Giacomo ;
Guenther, Alex B. ;
Helmig, Detlev ;
Lombardozzi, Danica L. ;
Munger, J. William ;
Patton, Edward G. ;
Pusede, Sally E. ;
Schwede, Donna B. ;
Silva, Sam J. ;
Soergel, Matthias ;
Steiner, Allison L. ;
Tai, Amos P. K. .
REVIEWS OF GEOPHYSICS, 2020, 58 (01)
[9]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[10]   Downscaling rainfall using deep learning long short-term memory and feedforward neural network [J].
Duong Tran Anh ;
Van, Song P. ;
Dang, Thanh D. ;
Hoang, Long P. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (10) :4170-4188