Room-Temperature Direct Synthesis of PbSe Quantum Dot Inks for High-Detectivity Near-Infrared Photodetectors

被引:36
作者
Peng, Mingfa [1 ]
Liu, Yang [2 ,3 ]
Li, Fei [2 ,3 ]
Hong, Xuekun [1 ]
Liu, Yushen [1 ]
Wen, Zhen [2 ,3 ]
Liu, Zeke [2 ,3 ]
Ma, Wanli [2 ,3 ]
Sun, Xuhui [2 ,3 ]
机构
[1] Changshu Inst Technol, Sch Elect & Informat Engn, Jiangsu Prov Key Lab Adv Funct Mat, Changshu 215500, Jiangsu, Peoples R China
[2] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
[3] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
关键词
colloidal quantum dots (QDs); PbSe; direct synthesis of QD inks; heterostructure; near-infrared photodetector; SOLAR-CELLS; PERFORMANCE;
D O I
10.1021/acsami.1c13723
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A PbSe colloidal quantum dot (QD) is typically a solution-processed semiconductor for near-infrared (NIR) opto-electronic applications. However, the wide application of PbSe QDs has been restricted due to their instability, which requires tedious synthesis and complicated treatments before being applied in devices. Here, we demonstrate efficient NIR photodetectors based on the room-temperature, direct synthesis of semiconducting PbSe QD inks. The in-situ passivation and the avoidance of ligand exchange endow PbSe QD photodetectors with high efficiency and low cost. By further constructing the PbSe QDs/ZnO heterostructure, the photodetectors exhibit the NIR responsivity up to 970 mA/W and a detectivity of 1.86 x 10(11) Jones at 808 nm. The obtained performance is comparable to that of the state-of-the-art PbSe QD photodetectors using a complex ligand exchange strategy. Our work may pave a new way for fabricating efficient and low-cost colloidal QD photodetectors.
引用
收藏
页码:51198 / 51204
页数:7
相关论文
共 38 条
[1]   Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency [J].
Ahmad, Wagar ;
He, Jungang ;
Liu, Zhitian ;
Xu, Ke ;
Chen, Zhuang ;
Yang, Xiaokun ;
Li, Dengbing ;
Xia, Yong ;
Zhang, Jianbing ;
Chen, Chao .
ADVANCED MATERIALS, 2019, 31 (33)
[2]   Electron Mobility of 24 cm2 V-1 s-1 in PbSe Colloidal-Quantum-Dot Superlattices [J].
Balazs, Daniel M. ;
Matysiak, Bartosz M. ;
Momand, Jamo ;
Shulga, Artem G. ;
Ibanez, Maria ;
Kovalenko, Maksym V. ;
Kooi, Bart J. ;
Loi, Maria Antonietta .
ADVANCED MATERIALS, 2018, 30 (38)
[3]  
Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]
[4]   The role of surface passivation for efficient and photostable PbS quantum dot solar cells [J].
Cao, Yiming ;
Stavrinadis, Alexandros ;
Lasanta, Tania ;
So, David ;
Konstantatos, Gerasimos .
NATURE ENERGY, 2016, 1
[5]   Solution-processed semiconductors for next-generation photodetectors (vol 2, 16100, 2017) [J].
de Arquer, F. Pelayo Garcia ;
Armin, Ardalan ;
Meredith, Paul ;
Sargent, Edward H. .
NATURE REVIEWS MATERIALS, 2017, 2 (03)
[6]   Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photodetectors [J].
Dolatyari, Mahboubeh ;
Rostami, Ali ;
Mathur, Sanjay ;
Klein, Axel .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (19) :5658-5669
[7]   Long-Wavelength Lead Sulfide Quantum Dots Sensing up to 2600 nm for Short-Wavelength Infrared Photodetectors [J].
Dong, Chen ;
Liu, Shuyi ;
Barange, Nilesh ;
Lee, Jaewoong ;
Pardue, Tyler ;
Yi, Xueping ;
Yin, Shichen ;
So, Franky .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (47) :44451-44457
[8]  
Goossens S, 2017, NAT PHOTONICS, V11, P366, DOI [10.1038/nphoton.2017.75, 10.1038/NPHOTON.2017.75]
[9]   Mid-wave infrared HgCdTe nBn photodetector [J].
Itsuno, Anne M. ;
Phillips, Jamie D. ;
Velicu, Silviu .
APPLIED PHYSICS LETTERS, 2012, 100 (16)
[10]   Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots [J].
Kim, Sungwoo ;
Marshal, Ashley R. ;
Kroupa, Daniel. M. ;
Miller, Elisa M. ;
Luther, Joseph M. ;
Jeong, Sohee ;
Beard, Matthew C. .
ACS NANO, 2015, 9 (08) :8157-8164