Quantum-limited metrology with product states

被引:93
作者
Boixo, Sergio [1 ,2 ]
Datta, Animesh [1 ]
Flammia, Steven T. [1 ,3 ]
Shaji, Anil [1 ]
Bagan, Emilio [1 ,4 ]
Caves, Carlton M. [1 ,5 ]
机构
[1] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[4] Univ Autonoma Barcelona, Fis Teor Grp, E-08193 Barcelona, Spain
[5] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
关键词
D O I
10.1103/PhysRevA.77.012317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the performance of initial product states of n-body systems in generalized quantum metrology protocols that involve estimating an unknown coupling constant in a nonlinear k-body (k < n) Hamiltonian. We obtain the theoretical lower bound on the uncertainty in the estimate of the parameter. For arbitrary initial states, the lower bound scales as 1/n(k), and for initial product states, it scales as 1/n(k-1/2). We show that the latter scaling can be achieved using simple, separable measurements. We analyze in detail the case of a quadratic Hamiltonian (k=2), implementable with Bose-Einstein condensates. We formulate a simple model, based on the evolution of angular-momentum coherent states, which explains the O(n(-3/2)) scaling for k=2; the model shows that the entanglement generated by the quadratic Hamiltonian does not play a role in the enhanced sensitivity scaling. We show that phase decoherence does not affect the O(n(-3/2)) sensitivity scaling for initial product states.
引用
收藏
页数:15
相关论文
共 30 条
  • [1] [Anonymous], 1982, N HOLLAND SERIES STA
  • [2] Breaking the Heisenberg limit with inefficient detectors -: art. no. 045801
    Beltrán, J
    Luis, A
    [J]. PHYSICAL REVIEW A, 2005, 72 (04):
  • [3] On decoherence in quantum clock synchronization
    Boixo, S.
    Caves, C. M.
    Datta, A.
    Shaji, A.
    [J]. LASER PHYSICS, 2006, 16 (11) : 1525 - 1532
  • [4] BOIXO S, ARXIVQUANTPH07081330, P30401
  • [5] Generalized limits for single-parameter quantum estimation
    Boixo, Sergio
    Flammia, Steven T.
    Caves, Carlton M.
    Geremia, J. M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (09)
  • [6] Optimal frequency measurements with maximally correlated states
    Bollinger, JJ
    Itano, WM
    Wineland, DJ
    Heinzen, DJ
    [J]. PHYSICAL REVIEW A, 1996, 54 (06): : R4649 - R4652
  • [7] Generalized uncertainty relations: Theory, examples, and Lorentz invariance
    Braunstein, SL
    Caves, CM
    Milburn, GJ
    [J]. ANNALS OF PHYSICS, 1996, 247 (01) : 135 - 173
  • [8] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [9] Entanglement assisted metrology
    Cappellaro, P
    Emerson, J
    Boulant, N
    Ramanathan, C
    Lloyd, S
    Cory, DG
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (02)
  • [10] Quantum information and precision measurement
    Childs, Andrew M.
    Preskill, John
    Reness, Joseph
    [J]. Journal of Modern Optics, 2000, 47 (2-3 SPEC.) : 155 - 176