Integral points on elliptic curves defined by simplest cubic fields

被引:12
作者
Duquesne, S [1 ]
机构
[1] Univ Bordeaux 1, Lab A2X, F-33405 Talence, France
关键词
D O I
10.1080/10586458.2001.10504431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(X) be a cubic polynomial defining a simplest cubic field in the sense of Shanks. We study integral points on elliptic curves of the form Y-2 = f(X). We compute the complete list of integral points on these curves for the values of the parameter below 1000. We prove that this list is exhaustive by using the methods of Tzanakis and de Weger, together with bounds on linear forms in elliptic logarithms due to S. David. Finally, we analyze this list and we prove in the general case the phenomena that we have observed. In particular, we find all integral points on the curve when the rank is equal to 1.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 19 条
[11]  
SHIODA T., 1990, COMMENT MATH U ST PA, V39, P211
[12]  
SILVERMAN JH, 1988, MATH COMPUT, V51, P339, DOI 10.1090/S0025-5718-1988-0942161-4
[13]  
SILVERMAN JH, 1990, MATH COMPUT, V55, P723, DOI 10.1090/S0025-5718-1990-1035944-5
[14]   S-INTEGRAL POINTS ON ELLIPTIC-CURVES [J].
SMART, NP .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 116 :391-399
[15]  
SMART NP, 1998, LONDON MATH SOC STUD, V41
[16]   SOLVING ELLIPTIC DIOPHANTINE EQUATIONS BY ESTIMATING LINEAR-FORMS IN ELLIPTIC LOGARITHMS [J].
STROEKER, RJ ;
TZANAKIS, N .
ACTA ARITHMETICA, 1994, 67 (02) :177-196
[17]  
WASHINGTON LC, 1987, MATH COMPUT, V48, P371, DOI 10.1090/S0025-5718-1987-0866122-8
[18]  
ZAGIER D, 1987, MATH COMPUT, V48, P425, DOI 10.1090/S0025-5718-1987-0866125-3
[19]   ADDITION [J].
ZAGIER, D .
MATHEMATICS OF COMPUTATION, 1988, 51 (183) :375-375