Integral points on elliptic curves defined by simplest cubic fields

被引:12
作者
Duquesne, S [1 ]
机构
[1] Univ Bordeaux 1, Lab A2X, F-33405 Talence, France
关键词
D O I
10.1080/10586458.2001.10504431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(X) be a cubic polynomial defining a simplest cubic field in the sense of Shanks. We study integral points on elliptic curves of the form Y-2 = f(X). We compute the complete list of integral points on these curves for the values of the parameter below 1000. We prove that this list is exhaustive by using the methods of Tzanakis and de Weger, together with bounds on linear forms in elliptic logarithms due to S. David. Finally, we analyze this list and we prove in the general case the phenomena that we have observed. In particular, we find all integral points on the curve when the rank is equal to 1.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 19 条
  • [1] EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2
    BAKER, A
    DAVENPOR.H
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) : 129 - &
  • [2] Cohen H., 1993, Graduate Texts in Mathematics
  • [3] CREMONA JE, 1998, MWRANK PROGRAM 2 DES
  • [4] David S., 1995, Mem. Soc. Math. France (N.S.), V62
  • [5] COMPUTING INTEGRAL POINTS ON ELLIPTIC-CURVES
    GEBEL, J
    PETHO, A
    ZIMMER, HG
    [J]. ACTA ARITHMETICA, 1994, 68 (02) : 171 - 192
  • [6] HUSEMOLLER D., 1987, Graduate Texts in Mathematics, V111
  • [7] LANG S, 1978, GRUDNLEHREN MATH WIS, V231
  • [8] Exceptional units in a family of quartic number fields
    Niklasch, G
    Smart, NP
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (222) : 759 - 772
  • [9] COMPLETE SOLUTIONS TO FAMILIES OF QUARTIC THUE EQUATIONS
    PETHO, A
    [J]. MATHEMATICS OF COMPUTATION, 1991, 57 (196) : 777 - 798
  • [10] SHANKS D, 1974, MATH COMPUT, V28, P1137, DOI 10.1090/S0025-5718-1974-0352049-8