Sheet-like garnet structure design for upgrading PEO-based electrolyte

被引:60
作者
Cheng, Jun [1 ]
Hou, Guangmei [2 ]
Chen, Qiong [1 ]
Li, Deping [1 ]
Li, Kaikai [1 ]
Yuan, Qunhui [1 ]
Wang, Jiajun [3 ]
Ci, Lijie [1 ,2 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, State Key Lab Adv Welding & Joining, Shenzhen 518055, Peoples R China
[2] Shandong Univ, Sch Mat Sci & Engn, Res Ctr Carbon Nanomat, Key Lab Liquid Solid Struct Evolut Proc Mat Minis, Jinan 250061, Peoples R China
[3] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Sheet-like LLZO; PEO-based electrolyte; Lithium dendrites suppression; Cycling stability; SOLID-STATE ELECTROLYTES; ION-CONDUCTING MEMBRANE; POLYMER ELECTROLYTES; LITHIUM-ION; BATTERIES; ACID;
D O I
10.1016/j.cej.2021.132343
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polyoxyethylene (PEO)-based electrolyte is one of the most promising solid-state electrolyte (SSE) candidates for all-solid-state batteries due to its high flexible and salt solubility. Recently, morphological control on active fillers is confirmed as a critical issue affecting the performance of SSE. However, the lack of comprehensive research is hindering the understanding over the growth mechanism of the structured active fillers. Especially, compared with other dimensions, the studies on the growth mechanism of two-dimensional (2D) active fillers are quite limited due to the difficulties in physical methods such as exfoliation. Herein, sheet-like LLZAO (Li6.25La3Zr2Al0.25O12) (SL) is synthesized by bottom-up method to upgrade PEO matrix (SL@PEO). In addition, the growth mechanism of SL is proposed, which provides a new sight for morphology control over inorganic solid electrolytes. The SL structure provides continuous interfaces between the fillers and the polymer matrix, which ensures rapid diffusion of lithium ions. In addition, the SL can provide more nature barriers for electrolyte to suppress the lithium dendrites growth. The lithium symmetric cells adopting SL@PEO present prolonged cycling stability and higher critical current density compared with the control samples. The assembled all-solid-state LiFePO4/SL@PEO/Li batteries exhibit superior cycling stability and rate capability.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler [J].
Ao, Xin ;
Wang, Xiaotao ;
Tan, Jiewen ;
Zhang, Shaolong ;
Su, Chenliang ;
Dong, Lei ;
Tang, Mingxue ;
Wang, Zhongchang ;
Tian, Bingbing ;
Wang, Haihui .
NANO ENERGY, 2021, 79
[2]   Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhao, Fei ;
Zhou, Xingyi ;
Ding, Yu ;
Yu, Guihua .
ENERGY STORAGE MATERIALS, 2018, 15 :46-52
[3]   Promotion effect of nitrogen-doped functional carbon nanodots on the early growth stage of plants [J].
Chen, Qiong ;
Ren, Xiaohua ;
Li, Yuqian ;
Liu, Beibei ;
Wang, Xiuli ;
Tu, Jiangping ;
Guo, Zhijiang ;
Jin, Gong ;
Min, Guanghui ;
Ci, Lijie .
OXFORD OPEN MATERIALS SCIENCE, 2021, 1 (01)
[4]   Impacts of surface chemistry of functional carbon nanodots on the plant growth [J].
Chen, Qiong ;
Chen, Long ;
Nie, Xiangkun ;
Man, Han ;
Guo, Zhijiang ;
Wang, Xiuli ;
Tu, Jiangping ;
Jin, Gong ;
Ci, Lijie .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 206
[5]   Enhanced bioaccumulation efficiency and tolerance for Cd (II) in Arabidopsis thaliana by amphoteric nitrogen-doped carbon dots [J].
Chen, Qiong ;
Liu, Beibei ;
Man, Han ;
Chen, Long ;
Wang, Xiuli ;
Tu, Jiangping ;
Guo, Zhijiang ;
Jin, Gong ;
Lou, Jun ;
Ci, Lijie .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 190
[6]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[7]   Cold-pressing PEO/LAGP composite electrolyte for integrated all-solid-state lithium metal battery [J].
Cheng, Jun ;
Hou, Guangmei ;
Sun, Qing ;
Liang, Zhen ;
Xu, Xiaoyan ;
Guo, Jianguang ;
Dai, Linna ;
Li, Deping ;
Nie, Xiangkun ;
Zeng, Zhen ;
Si, Pengchao ;
Ci, Lijie .
SOLID STATE IONICS, 2020, 345 (345)
[8]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[9]   Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries [J].
Gong, Yunhui ;
Fu, Kun ;
Xu, Shaomao ;
Dai, Jiaqi ;
Hamann, Tanner R. ;
Zhang, Lei ;
Hitz, Gregory T. ;
Fu, Zhezhen ;
Ma, Zhaohui ;
McOwen, Dennis W. ;
Han, Xiaogang ;
Hu, Liangbing ;
Wachsman, Eric D. .
MATERIALS TODAY, 2018, 21 (06) :594-601
[10]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196