Inductive concept retrieval and query answering with semantic knowledge bases through kernel methods

被引:0
作者
Fanizzi, Nicola [1 ]
d'Amato, Claudia [1 ]
机构
[1] Univ Bari, Dipartimento Informat, Campus Univ,Via Orabona 4, I-70125 Bari, Italy
来源
KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT I, PROCEEDINGS | 2007年 / 4692卷
关键词
inductive concept retrieval; query answering; Kernel methods; Kernel function; description logics; semantic web;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work deals with the application of kernel methods to structured relational settings such as semantic knowledge bases expressed in Description Logics. Our method integrates a novel kernel function for the ALC logic in a support vector machine that could be set up to work with these representations. In particular, we present experiments where our method is applied to the tasks of concept retrieval and query answering on existing ontologies.
引用
收藏
页码:148 / +
页数:2
相关论文
共 9 条
  • [1] Baader F., 2003, DESCRIPTION LOGIC HD
  • [2] The Semantic Web - A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities
    Berners-Lee, T
    Hendler, J
    Lassila, O
    [J]. SCIENTIFIC AMERICAN, 2001, 284 (05) : 34 - +
  • [3] Cumby CM, 2003, P 20 INT C MACH LEAR, P107
  • [4] Donini F. M., 1994, Journal of Logic and Computation, V4, P423, DOI 10.1093/logcom/4.4.423
  • [5] Fanizzi N, 2006, LECT NOTES ARTIF INT, V4203, P322
  • [6] Kernels and distances for structured data
    Gärtner, T
    Lloyd, JW
    Flach, PA
    [J]. MACHINE LEARNING, 2004, 57 (03) : 205 - 232
  • [7] Gartner T., 2003, SIGKDD EXPLORATIONS, V5, P49, DOI DOI 10.1145/959242.959248
  • [8] HAUSSLER D, 1999, UCSCCRL9910 U CAL DE
  • [9] Scholkopf B., 2001, Learning with kernels: support vector machines, regularization, optimization, and beyond