A Multiplicity Theorem for Superlinear Double Phase Problems

被引:6
作者
Deregowska, Beata [1 ]
Gasinski, Leszek [2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] State Higher Vocat Sch Tarnow, Inst Math & Nat Sci, Mickiewicza 8, PL-33100 Tarnow, Poland
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 09期
关键词
double phase operator; Nehari manifold; superlinear reaction; constant sign and nodal solutions; Musielak-Orlicz spaces; REGULARITY; EXISTENCE; CALCULUS;
D O I
10.3390/sym13091556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a nonlinear Dirichlet problem driven by the double phase differential operator and with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold, we show that the problem has at least three nontrivial bounded solutions: nodal, positive and by the symmetry of the behaviour at +infinity and -infinity also negative.
引用
收藏
页数:23
相关论文
共 50 条
[41]   Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent [J].
Kim, In Hyoun ;
Kim, Yun-Ho ;
Oh, Min Wook ;
Zeng, Shengda .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
[42]   Sequences of nodal solutions for critical double phase problems with variable exponents [J].
Papageorgiou, Nikolaos S. ;
Vetro, Francesca ;
Winkert, Patrick .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03)
[43]   MULTIPLICITY THEOREMS FOR RESONANT AND SUPERLINEAR NONHOMOGENEOUS ELLIPTIC EQUATIONS [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (01) :283-320
[44]   Positive Solutions for Convective Double Phase Problems [J].
Papageorgiou, Nikolao S. ;
Peng, Zijia .
RESULTS IN MATHEMATICS, 2024, 79 (06)
[45]   Double phase Dirichlet problems with unilateral constraints [J].
Liu, Zhenhai ;
Papageorgiou, Nikolaos S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 316 :249-269
[46]   Multiple Solutions for Sublinear Double Phase Problems [J].
Afonso, Danilo Gregorin ;
Bisci, Giovanni Molica .
ASYMPTOTIC ANALYSIS, 2025, 142 (02) :432-446
[47]   Solutions for parametric double phase Robin problems [J].
Papageorgiou, Nikolaos S. ;
Vetro, Calogero ;
Vetro, Francesca .
ASYMPTOTIC ANALYSIS, 2021, 121 (02) :159-170
[48]   HIGH MULTIPLICITY AND COMPLEXITY OF THE BIFURCATION DIAGRAMS OF LARGE SOLUTIONS FOR A CLASS OF SUPERLINEAR INDEFINITE PROBLEMS [J].
Lopez-Gomez, Julian ;
Tellini, Andrea ;
Zanolin, Fabio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (01) :1-73
[49]   Existence of solutions for singular double phase problems via the Nehari manifold method [J].
Liu, Wulong ;
Dai, Guowei ;
Papageorgiou, Nikolaos S. ;
Winkert, Patrick .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
[50]   MULTIPLICITY OF SOLUTIONS TO FOURTH-ORDER SUPERLINEAR ELLIPTIC PROBLEMS UNDER NAVIER CONDITIONS [J].
Da Silva, Edcarlos D. ;
Cavalcante, Thiago Rodrigues .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,