A Multiplicity Theorem for Superlinear Double Phase Problems

被引:6
作者
Deregowska, Beata [1 ]
Gasinski, Leszek [2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] State Higher Vocat Sch Tarnow, Inst Math & Nat Sci, Mickiewicza 8, PL-33100 Tarnow, Poland
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 09期
关键词
double phase operator; Nehari manifold; superlinear reaction; constant sign and nodal solutions; Musielak-Orlicz spaces; REGULARITY; EXISTENCE; CALCULUS;
D O I
10.3390/sym13091556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a nonlinear Dirichlet problem driven by the double phase differential operator and with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold, we show that the problem has at least three nontrivial bounded solutions: nodal, positive and by the symmetry of the behaviour at +infinity and -infinity also negative.
引用
收藏
页数:23
相关论文
共 50 条
[31]   Existence and multiplicity of solutions for double-phase Robin problems [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (03) :546-560
[32]   Existence and Multiplicity Results for Kirchhoff-Type Problems on a Double-Phase Setting [J].
Fiscella, Alessio ;
Pinamonti, Andrea .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
[33]   Identification of discontinuous parameters in double phase obstacle problems [J].
Zeng, Shengda ;
Bai, Yunru ;
Winkert, Patrick ;
Yao, Jen-Chih .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) :1-22
[34]   Anisotropic double-phase problems with indefinite potential: multiplicity of solutions [J].
Nikolaos S. Papageorgiou ;
Dongdong Qin ;
Vicenţiu D. Rădulescu .
Analysis and Mathematical Physics, 2020, 10
[35]   A multiplicity theorem for Neumann problems with asymmetric nonlinearity [J].
Papageorgiou, Nikolaos S. ;
Smyrlis, George .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (02) :253-272
[36]   Constant sign and nodal solutions for resonant double phase problems [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Wang, Yitian .
ANNALES FENNICI MATHEMATICI, 2023, 48 (02) :757-777
[37]   Existence and multiplicity results for double phase problem with nonlinear boundary condition [J].
Cui, Na ;
Sun, Hong-Rui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
[38]   Singular double phase problems with convection [J].
Papageorgiou, Nikolaos S. ;
Peng, Zijia .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
[39]   On a class of critical double phase problems [J].
Farkas, Csaba ;
Fiscella, Alessio ;
Winkert, Patrick .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
[40]   On a double phase problem with sublinear and superlinear nonlinearities [J].
Wang, Ke-Qi ;
Zhou, Qing-Mei .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (6-7) :1182-1193