A Multiplicity Theorem for Superlinear Double Phase Problems

被引:5
作者
Deregowska, Beata [1 ]
Gasinski, Leszek [2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] State Higher Vocat Sch Tarnow, Inst Math & Nat Sci, Mickiewicza 8, PL-33100 Tarnow, Poland
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 09期
关键词
double phase operator; Nehari manifold; superlinear reaction; constant sign and nodal solutions; Musielak-Orlicz spaces; REGULARITY; EXISTENCE; CALCULUS;
D O I
10.3390/sym13091556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a nonlinear Dirichlet problem driven by the double phase differential operator and with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold, we show that the problem has at least three nontrivial bounded solutions: nodal, positive and by the symmetry of the behaviour at +infinity and -infinity also negative.
引用
收藏
页数:23
相关论文
共 50 条
[1]   Multiple solutions for superlinear double phase Neumann problems [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Zhang, Youpei .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
[2]   Constant sign and nodal solutions for superlinear double phase problems [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) :613-626
[3]   Combined effects of singular and superlinear nonlinearities in singular double phase problems in RN [J].
Liu, Wulong ;
Winkert, Patrick .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
[4]   Parametric superlinear double phase problems with singular term and critical growth on the boundary [J].
Crespo-Blanco, Angel ;
Papageorgiou, Nikolaos S. ;
Winkert, Patrick .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) :2276-2298
[5]   Divergent sequence of nontrivial solutions for superlinear double phase problems [J].
Papageorgiou, Nikolaos S. ;
Vetro, Calogero ;
Vetro, Francesca .
ASYMPTOTIC ANALYSIS, 2023, 134 (1-2) :183-192
[6]   Nehari manifold approach for superlinear double phase problems with variable exponents [J].
Crespo-Blanco, Angel ;
Winkert, Patrick .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (02) :605-634
[7]   Multiple solutions for superlinear double phase Neumann problems [J].
Nikolaos S. Papageorgiou ;
Vicenţiu D. Rădulescu ;
Youpei Zhang .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
[8]   A MULTIPLICITY THEOREM FOR PARAMETRIC SUPERLINEAR (p, q)-EQUATIONS [J].
Onete, Florin-Iulian ;
Papageorgiou, Nikolaos S. ;
Vetro, Calogero .
OPUSCULA MATHEMATICA, 2020, 40 (01) :131-149
[9]   Concentration and multiplicity of solutions for fractional double phase problems [J].
Zhang, Youpei ;
Radulescu, Vicentiu D. ;
Chen, Jing ;
Qin, Dongdong .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
[10]   A Multiplicity Theorem for p-Superlinear Neumann Problems with a Nonhomogeneous Differential Operator [J].
Barletta, Giuseppina ;
Papageorgiou, Nikolaos S. .
ADVANCED NONLINEAR STUDIES, 2014, 14 (04) :895-913