A Multiplicity Theorem for Superlinear Double Phase Problems

被引:6
作者
Deregowska, Beata [1 ]
Gasinski, Leszek [2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] State Higher Vocat Sch Tarnow, Inst Math & Nat Sci, Mickiewicza 8, PL-33100 Tarnow, Poland
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 09期
关键词
double phase operator; Nehari manifold; superlinear reaction; constant sign and nodal solutions; Musielak-Orlicz spaces; REGULARITY; EXISTENCE; CALCULUS;
D O I
10.3390/sym13091556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a nonlinear Dirichlet problem driven by the double phase differential operator and with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold, we show that the problem has at least three nontrivial bounded solutions: nodal, positive and by the symmetry of the behaviour at +infinity and -infinity also negative.
引用
收藏
页数:23
相关论文
共 27 条
[1]  
Adams R.A., 2003, Sobolev spaces
[2]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[3]  
Brown KJ, 2007, ELECTRON J DIFFER EQ
[4]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[5]   Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold [J].
Gasinski, Leszek ;
Winkert, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 :1037-1066
[6]   Constant sign and nodal solutions for superlinear double phase problems [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) :613-626
[7]   Constant sign solutions for double phase problems with superlinear nonlinearity [J].
Gasinski, Leszek ;
Winkert, Patrick .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[8]   On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions [J].
Ge, Bin ;
Wang, Li-Yan ;
Lu, Jian-Fang .
APPLICABLE ANALYSIS, 2021, 100 (10) :2147-2162
[9]   Orlicz Spaces and Generalized Orlicz Spaces [J].
Harjulehto, Petteri ;
Hasto, Peter .
ORLICZ SPACES AND GENERALIZED ORLICZ SPACES, 2019, 2236 :V-+
[10]   Surface spin waves propagation in tapered magnetic stripe [J].
Kalyabin, D. V. ;
Sadovnikov, A. V. ;
Beginin, E. N. ;
Nikitov, S. A. .
JOURNAL OF APPLIED PHYSICS, 2019, 126 (17)