Stability and Bifurcation Analysis of a Discrete Predator-Prey Model with Mixed Holling Interaction

被引:12
作者
Elettreby, M. F. [1 ,2 ]
Nabil, Tamer [1 ,3 ]
Khawagi, A. [4 ]
机构
[1] King Khalid Univ, Fac Sci, Math Dept, Abha 9004, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Math Dept, Mansoura 35516, Egypt
[3] Suez Canal Univ, Fac Comp & Informat, Basic Sci Dept, Ismailia, Egypt
[4] King Khalid Univ, Fac Sci & Arts, Math Dept, Mohayil Asir, Saudi Arabia
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2020年 / 122卷 / 03期
关键词
Predator-prey model; functional response of Holling type; stability and bifurcation analysis; chaos; DYNAMICS; SYSTEM;
D O I
10.32604/cmes.2020.08664
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III. The equilibrium points of the model are obtained, and their stability is tested. The dynamical behavior of this model is studied according to the change of the control parameters. We find that the complex dynamical behavior extends from a stable state to chaotic attractors. Finally, the analytical results are clarified by some numerical simulations.
引用
收藏
页码:907 / 921
页数:15
相关论文
共 27 条
[1]   Chaotic dynamics of a discrete prey-predator model with Holling type II [J].
Agiza, H. N. ;
ELabbasy, E. M. ;
EL-Metwally, H. ;
Elsadany, A. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :116-129
[2]  
Albert C. J. L, 2012, REGULARITY COMPLEXIT
[3]   Bifurcations and dynamics of a discrete predator-prey system [J].
Asheghi, Rasoul .
JOURNAL OF BIOLOGICAL DYNAMICS, 2014, 8 (01) :161-186
[4]  
Chou Ching-Shan., 2016, Introduction to Mathematical Biology modeling, Analysis, and Simulations
[5]   Complex dynamics of a discrete-time predator-prey system with Holling IV functional response [J].
Cui, Qianqian ;
Zhang, Qiang ;
Qiu, Zhipeng ;
Hu, Zengyun .
CHAOS SOLITONS & FRACTALS, 2016, 87 :158-171
[6]   Detailed analysis of a nonlinear prey-predator model [J].
Danca, M ;
Codreanu, S ;
Bako, B .
JOURNAL OF BIOLOGICAL PHYSICS, 1997, 23 (01) :11-20
[7]  
Elaydi S., 2008, Discrete Chaos: Applications in Science and Engineering, V2nd
[8]   Multi-team prey-predator model [J].
Elettreby, M. F. ;
El-Metwally, H. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (10) :1609-1617
[9]   Two-prey one-predator model [J].
Elettreby, M. F. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (05) :2018-2027
[10]  
Elettreby M. F., 2017, J FRACT CALC APPL, V8, P237