I-CovidVis - A Visual Analytics Tool for Interoperable Healthcare Databases using Graphs

被引:2
作者
Linhares, Claudio D. G. [1 ]
Lima, Daniel M. [2 ]
Bones, Christian C. [1 ]
Rebelo, Marina F. S. [2 ]
Gutierrez, Marco A. [2 ]
Traina Jr, Caetano [1 ]
Traina, Agma J. M. [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp ICMC, Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Inst Coracao InCor HC FMUSP, Sao Paulo, SP, Brazil
来源
2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) | 2021年
基金
巴西圣保罗研究基金会;
关键词
information visualization; visual analytics; data visualization; complex networks; graph visualization; healthcare systems; data mining;
D O I
10.1109/CBMS52027.2021.00059
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The current COVID-19 pandemic has promoted the periodic release of several health databases aimed at discovering relationships in the data, detecting similar problems in patients, and studying the evolution of the disease. A way to exploit the data is to use visualization techniques, which can lead to the discovery of insights and patterns, as well as to guide analysis procedures to understand the data. In this paper, we present I-CovidVis, a visualization tool to explore data from interoperable healthcare systems, able to compare and navigate in both global and local perspectives. Our approach is to model data as a graph and explore its structural and temporal views. Our proposal facilitates the perception of patterns, trends, periodicity, and anomalies, resulting in faster decision making.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 21 条
  • [1] [Anonymous], 2020, COVID 19 DAT
  • [2] A Taxonomy and Survey of Dynamic Graph Visualization
    Beck, Fabian
    Burch, Michael
    Diehl, Stephan
    Weiskopf, Daniel
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (01) : 133 - 159
  • [3] Learning from lines: Critical COVID data visualizations and the quarantine quotidian
    Bowe, Emily
    Simmons, Erin
    Mattern, Shannon
    [J]. BIG DATA & SOCIETY, 2020, 7 (02):
  • [4] HEALTH CARE in the Age of Interoperability
    Braunstein, Mark L.
    [J]. IEEE PULSE, 2018, 9 (06) : 24 - 27
  • [5] Visual Analytic Tools and Techniques in Population Health and Health Services Research: Scoping Review
    Chishtie, Jawad Ahmed
    Marchand, Jean-Sebastien
    Turcotte, Luke A.
    Bielska, Iwona Anna
    Babineau, Jessica
    Cepoiu-Martin, Monica
    Irvine, Michael
    Munce, Sarah
    Abudiab, Sally
    Bjelica, Marko
    Hossain, Saima
    Imran, Muhammad
    Jeji, Tara
    Jaglal, Susan
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (12)
  • [6] Detecting early signals of COVID-19 global pandemic from network density
    Chu, Amanda M. Y.
    Tiwari, Agnes
    So, Mike K. P.
    [J]. JOURNAL OF TRAVEL MEDICINE, 2020, 27 (05)
  • [7] Role of visual analytics in supporting mental healthcare systems research and policy: A systematic scoping review
    Chung, Younjin
    Bagheri, Nasser
    Alberto Salinas-Perez, Jose
    Smurthwaite, Kayla
    Walsh, Erin
    Furst, MaryAnne
    Rosenberg, Sebastian
    Salvador-Carulla, Luis
    [J]. INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2020, 50 : 17 - 27
  • [8] Bag-of-Attributes Representation: a Vector Space Model for Electronic Health Records Analysis in OMOP
    Clementino Jr, Jose M.
    Bones, Christian C.
    Faical, Bruno S.
    Linares, Oscar C.
    Lima, Daniel M.
    Gutierrez, Marco A.
    Traina Jr, Caetano
    Traina, Agma J. M.
    [J]. 2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 197 - 202
  • [9] Graph visualization and navigation in information visualization:: A survey
    Herman, I
    Melançon, G
    Marshall, MS
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2000, 6 (01) : 24 - 43
  • [10] Kobourov S. G., 2012, Spring embedders and force directed graph drawing algorithms