Graphical representations and cluster algorithms II

被引:87
作者
Chayes, L [1 ]
Machta, J
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Massachusetts, Dept Phys & Astron, Amherst, MA 01003 USA
来源
PHYSICA A | 1998年 / 254卷 / 3-4期
基金
美国国家科学基金会;
关键词
cluster algorithms; random cluster models;
D O I
10.1016/S0378-4371(97)00637-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We continue the study, initiated in Part I, of graphical representations and cluster algorithms for various models in (or related to) statistical mechanics. For certain models, e.g. the Blume-Emery-Griffths model and various generalizations, we develop Fortuin Kasteleyn-type representations which lead immediately to Swendsen Wang-type algorithms. For other models, e.g. the random cluster model, that are defined by a graphical representation, we develop cluster algorithms without reference to an underlying spin system. In all cases, phase transitions are related to percolation (or incipient percolation) in the graphical representation which, via the IC algorithm, allows for the rapid simulation of these systems at the transition point. Pertinent examples include the (continuum) Widom-Rowlinson model, the restricted 1-step solid-on-solid model and the XY model. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:477 / 516
页数:40
相关论文
共 45 条
[1]   WETTING IN A 3-DIMENSIONAL SYSTEM - AN EXACT SOLUTION [J].
ABRAHAM, DB ;
NEWMAN, CM .
PHYSICAL REVIEW LETTERS, 1988, 61 (17) :1969-1972
[2]   ON THE SLOW DECAY OF O(2) CORRELATIONS IN THE ABSENCE OF TOPOLOGICAL EXCITATIONS - REMARK ON THE PATRASCIOIU-SEILER MODEL [J].
AIZENMAN, M .
JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (1-2) :351-359
[3]   DISCONTINUITY OF THE MAGNETIZATION IN ONE-DIMENSIONAL 1/[X-Y]2 ISING AND POTTS MODELS [J].
AIZENMAN, M ;
CHAYES, JT ;
CHAYES, L ;
NEWMAN, CM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (1-2) :1-40
[4]   DISCONTINUITY OF THE PERCOLATION DENSITY IN ONE-DIMENSIONAL 1[X-Y]2 PERCOLATION MODELS [J].
AIZENMAN, M ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) :611-647
[5]  
ALEXANDER K, IN PRESS COMMUN MATH
[6]   ISING MODEL FOR LAMBDA TRANSITION AND PHASE SEPARATION IN HE-3-HE-4 MIXTURES [J].
BLUME, M ;
EMERGY, VJ ;
GRIFFITHS, RB .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (03) :1071-+
[7]   The random-cluster model on the complete graph [J].
Bollobas, B ;
Grimmett, G ;
Janson, S .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (03) :283-317
[8]  
CAMPBELL M, IN PRESS J PHYS A
[9]   THE ANALYSIS OF THE WIDOM-ROWLINSON MODEL BY STOCHASTIC GEOMETRIC METHODS [J].
CHAYES, JT ;
CHAYES, L ;
KOTECKY, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (03) :551-569
[10]   THE CORRECT EXTENSION OF THE FORTUIN-KASTELEYN RESULT TO PLAQUETTE PERCOLATION [J].
CHAYES, JT ;
CHAYES, L .
NUCLEAR PHYSICS B, 1984, 235 (01) :19-23