A new regularity criterion for the navier-stokes equations in terms of the direction of vorticity

被引:35
作者
Zhou, Y
机构
[1] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[2] Xiamen Univ, Xiamen, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 144卷 / 03期
关键词
Navier-Stokes equations; regularity criterion; a priori estimates;
D O I
10.1007/s00605-004-0266-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a new regularity criterion in terms of the direction of vorticity for the weak solution to 3-D incompressible Navier-Stokes equations.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 12 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]  
Beirao da Veiga H., 2002, Differ. Integr. Equ, V15, P345, DOI DOI 10.57262/DIE/1356060864
[3]   DIRECTION OF VORTICITY AND THE PROBLEM OF GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FEFFERMAN, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :775-789
[4]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[5]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[6]  
Hopf E., 1950, MATH NACHR, V4, P213, DOI DOI 10.1002/MANA.3210040121
[7]   Bilinear estimates in BMO and the Navier-Stokes equations [J].
Kozono, H ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) :173-194
[8]  
Leray J., 1933, J. Math. Pures Appl, V12, P1
[9]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[10]  
VONWAHL W, 1985, EQUATIONS NAVIERSTOK