Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode

被引:134
作者
Li, Quan [1 ,2 ]
Pan, Hongyi [1 ]
Li, Wenjun [1 ]
Wang, Yi [1 ,2 ]
Wang, Junyang [1 ,2 ]
Zheng, Jieyun [1 ]
Yu, Xiqian [1 ]
Li, Hong [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, PR China Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
来源
ACS ENERGY LETTERS | 2018年 / 3卷 / 09期
基金
中国国家自然科学基金;
关键词
METAL ANODES; DEPOSITION; ELECTROLYTE; LIQUID; OXIDATION; CAPACITY; BEHAVIOR; GROWTH; LI3N;
D O I
10.1021/acsenergylett.8b01244
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dendrite growth is one of the major problems that hinder the practical application of lithium metal electrodes in rechargeable lithium batteries. Herein, we report that the thin-film Cu3N coating can greatly suppress the lithium dendrite growth on the Cu current collector. Li vertical bar Cu and LiFePO4 vertical bar Cu cells using thin-film Cu3N-modified Cu foil as electrode exhibit improved cyclic stability and low charge-discharge over-potential. A multifaceted investigation demonstrates that Cu3N can convert to Li3N/Cu nanocomposite after initial lithium plating, forming in situ a highly homogeneous conductive network. The peak-force tunneling atomic force microscopy experiments enable the direct measurement of the surface conductivity, confirming the improved distribution uniformity for the Cu3N-modified Cu. These findings suggest that the uniformity of surface electronic conductivity is an important factor for homogeneous lithium plating-stripping, and in situ formation of a nanoconductive network via conversion reaction could be an effective way to smoothen surface conductivity and thus to achieve high uniformity.
引用
收藏
页码:2259 / +
页数:15
相关论文
共 50 条
  • [1] Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
    Biesinger, Mark C.
    Payne, Brad P.
    Grosvenor, Andrew P.
    Lau, Leo W. M.
    Gerson, Andrea R.
    Smart, Roger St. C.
    [J]. APPLIED SURFACE SCIENCE, 2011, 257 (07) : 2717 - 2730
  • [2] ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS
    CHAZALVIEL, JN
    [J]. PHYSICAL REVIEW A, 1990, 42 (12): : 7355 - 7367
  • [3] Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
    Ding, Fei
    Xu, Wu
    Graff, Gordon L.
    Zhang, Jian
    Sushko, Maria L.
    Chen, Xilin
    Shao, Yuyan
    Engelhard, Mark H.
    Nie, Zimin
    Xiao, Jie
    Liu, Xingjiang
    Sushko, Peter V.
    Liu, Jun
    Zhang, Ji-Guang
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) : 4450 - 4456
  • [4] Dong TT, 2018, ENERG ENVIRON SCI, V11, P1197, DOI 10.1039/c7ee03365f
  • [5] Comparison of modeling predictions with experimental data from plastic lithium ion cells
    Doyle, M
    Newman, J
    Gozdz, AS
    Schmutz, CN
    Tarascon, JM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) : 1890 - 1903
  • [6] Regulating Li deposition at artificial solid electrolyte interphases
    Fan, Lei
    Zhuang, Houlong L.
    Gao, Lina
    Lu, Yingying
    Archer, Lynden A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) : 3483 - 3492
  • [7] Fabrication of well-ordered CuO nanowire arrays by direct oxidation of sputter-deposited Cu3N film
    Fan, X. Y.
    Wu, Z. G.
    Yan, P. X.
    Geng, B. S.
    Li, H. J.
    Li, C.
    Zhang, P. J.
    [J]. MATERIALS LETTERS, 2008, 62 (12-13) : 1805 - 1808
  • [8] Electrochemical reactions of lithium with transition metal nitride electrodes
    Fu, ZW
    Wang, Y
    Yue, XL
    Zhao, SL
    Qin, QZ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) : 2236 - 2244
  • [9] Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
  • [10] Self-Stabilized Solid Electrolyte Interface on a Host-Free Li-Metal Anode toward High Areal Capacity and Rate Utilization
    Hu, Zhenglin
    Zhang, Shu
    Dong, Shanmu
    Li, Quan
    Cui, Guanglei
    Chen, Liquan
    [J]. CHEMISTRY OF MATERIALS, 2018, 30 (12) : 4039 - 4047