UEP: an open-source and fast classifier for predicting the impact of mutations in protein-protein complexes

被引:3
作者
Amengual-Rigo, Pep [1 ]
Fernandez-Recio, Juan [1 ,2 ]
Guallar, Victor [1 ,3 ]
机构
[1] Barcelona Supercomp Ctr BSC, Dept Life Sci, Barcelona 08034, Spain
[2] CSIC Univ Rioja Gobierno Rioja, Inst Ciencias Vid & Vino ICVV, Logrono 26007, Spain
[3] CREA Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
关键词
WEB SERVER; BINDING-AFFINITY; ELECTROSTATICS; DESOLVATION; ANTIBODY; POTENCY;
D O I
10.1093/bioinformatics/btaa708
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single protein residue mutations may reshape the binding affinity of protein-protein interactions. Therefore, predicting its effects is of great interest in biotechnology and biomedicine. Unfortunately, the availability of experimental data on binding affinity changes upon mutation is limited, which hampers the development of new and more precise algorithms. Here, we propose UEP, a classifier for predicting beneficial and detrimental mutations in protein-protein complexes trained on interactome data. Results: Regardless of the simplicity of the UEP algorithm, which is based on a simple three-body contact potential derived from interactome data, we report competitive results with the gold standard methods in this field with the advantage of being faster in terms of computational time. Moreover, we propose a consensus selection procedure by involving the combination of three predictors that showed higher classification accuracy in our benchmark: UEP, pyDock and EvoEF1/FoldX. Overall, we demonstrate that the analysis of interactome data allows predicting the impact of protein-protein mutations using UEP, a fast and reliable open-source code.
引用
收藏
页码:334 / 341
页数:8
相关论文
共 25 条
  • [1] pyDock: Electrostatics and desolvation for effective scoring of rigid-body protein-protein docking
    Cheng, Tammy Man-Kuang
    Blundell, Tom L.
    Fernandez-Recio, Juan
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 68 (02) : 503 - 515
  • [2] The Contribution of Missense Mutations in Core and Rim Residues of Protein-Protein Interfaces to Human Disease
    David, Alessia
    Sternberg, Michael J. E.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2015, 427 (17) : 2886 - 2898
  • [3] BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations
    Dehouck, Yves
    Kwasigroch, Jean Marc
    Rooman, Marianne
    Gilis, Dimitri
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (W1) : W333 - W339
  • [4] Increasing the Potency and Breadth of an HIV Antibody by Using Structure-Based Rational Design
    Diskin, Ron
    Scheid, Johannes F.
    Marcovecchio, Paola M.
    West, Anthony P., Jr.
    Klein, Florian
    Gao, Han
    Gnanapragasam, Priyanthi N. P.
    Abadir, Alexander
    Seaman, Michael S.
    Nussenzweig, Michel C.
    Bjorkman, Pamela J.
    [J]. SCIENCE, 2011, 334 (6060) : 1289 - 1293
  • [5] ANALYSIS OF MEMBRANE AND SURFACE PROTEIN SEQUENCES WITH THE HYDROPHOBIC MOMENT PLOT
    EISENBERG, D
    SCHWARZ, E
    KOMAROMY, M
    WALL, R
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1984, 179 (01) : 125 - 142
  • [6] Finding the ΔΔG spot: Are predictors of binding affinity changes upon mutations in protein-protein interactions ready for it?
    Geng, Cunliang
    Xue, Li C.
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2019, 9 (05)
  • [7] iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations
    Geng, Cunliang
    Vangone, Anna
    Folkers, Gert E.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (02) : 110 - 119
  • [8] Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations
    Guerois, R
    Nielsen, JE
    Serrano, L
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2002, 320 (02) : 369 - 387
  • [9] EvoEF2: accurate and fast energy function for computational protein design
    Huang, Xiaoqiang
    Pearce, Robin
    Zhang, Yang
    [J]. BIOINFORMATICS, 2020, 36 (04) : 1135 - 1142
  • [10] SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation
    Jankauskaite, Justina
    Jimenez-Garcia, Brian
    Dapkunas, Justas
    Fernandez-Recio, Juan
    Moal, Iain H.
    [J]. BIOINFORMATICS, 2019, 35 (03) : 462 - 469