Analysis of the dynamics of fuel spray using asymptotic methods: The method of integral invariant manifolds

被引:3
作者
Nave, Ophir [1 ,2 ]
Ajadi, Suraj [3 ]
Lehavi, Yaron
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Jerusalem Coll Technol JCT, Jerusalem, Israel
[3] OAU, Fac Sci, Dept Math, Ife, Nigeria
关键词
Thermal explosion; Asymptotic analysis; Singular perturbed system; Chemical reactions; Numerical simulations; THERMAL-EXPLOSION; RADIATION; IGNITION; DROPLETS; MODEL; GAS;
D O I
10.1016/j.amc.2011.11.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current research deals with the thermal explosion and ignition of a mixture of carbon and air. The size distribution of the carbon particles is taken to be continuous and is characterized by a probability density function. The chemical reaction term is presented in the Arrhenius form with variable pre-exponential factor. Transforming the new model to a dimensionless form enables us to rewrite the model in a singular perturbed system of ordinary differential equations. This form of the model enables us to apply the method of integral manifold (MIM). As a result of this method we can derive an explicit expression for the thermal explosion limit which depends on the initial probability density function. Comparing our numerical results to the analytical results, we observe that the effect of the thermal radiation is significant, especially at high temperatures, and cannot be ignored in the analysis of the phenomena of the explosion and ignition. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:5877 / 5890
页数:14
相关论文
共 22 条
[11]   A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis [J].
Gonzalez-Tello, P. ;
Camacho, F. ;
Vicaria, J. M. ;
Gonzalez, P. A. .
POWDER TECHNOLOGY, 2008, 186 (03) :278-281
[12]   INFLUENCE OF REACTANT CONSUMPTION ON CRITICAL CONDITIONS FOR HOMOGENEOUS THERMAL EXPLOSIONS [J].
KASSOY, DR ;
LINAN, A .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1978, 31 (FEB) :99-112
[13]  
Madsen J., 2006, THESIS
[14]  
NAVE O, 2010, COMBUST SCI TECHNOL, V183
[15]   A probabilistic model of thermal explosion in polydisperse fuel spray [J].
Nave, Ophir ;
Bykov, Vitcheslav ;
Gol'dshtein, Vladimir .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2698-2709
[16]   Order reduction of a non-Lipschitzian model of monodisperse spray ignition [J].
Sazhin, S. S. ;
Shchepakina, E. ;
Sobolev, V. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (3-4) :529-537
[17]   Thermal ignition analysis of a monodisperse spray with radiation [J].
Sazhin, SS ;
Feng, G ;
Heikal, MR ;
Goldfarb, I ;
Gol'dshtein, V ;
Kuzmenko, G .
COMBUSTION AND FLAME, 2001, 124 (04) :684-701
[18]   Theory of the combustion process [J].
Semenoff, N. .
ZEITSCHRIFT FUR PHYSIK, 1928, 48 (7-8) :571-582
[19]  
SEUNG WB, 1990, COMBUST FLAME, V81
[20]  
SEUNG WB, 1994, COMBUST FLAME, V96, P121