Differential graded Lie algebras controlling infinitesimal deformations of coherent sheaves

被引:16
作者
Fiorenza, Domenico [1 ]
Iacono, Donatella [2 ]
Martinengo, Elena [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
Differential graded Lie algebras; functors of Artin rings;
D O I
10.4171/JEMS/310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the Thom-Whitney construction to show that infinitesimal deformations of a coherent sheaf F are controlled by the differential graded Lie algebra of global sections of an acyclic resolution of the sheaf epsilon nd*(epsilon(.)), where epsilon(.) is any locally free resolution of F. In particular, one recovers the well known fact that the tangent space to Def(F) is Ext(1)(F, F), and obstructions are contained in Ext(2)(F, F) The main tool is the identification of the deformation functor associated with the Thom-Whitney DGLA of a semicosimplicial DGLA g(Delta), whose cohomology is concentrated in nonnegative degrees, with a noncommutative Cech cohomology-type functor H-sc(1)(exp g(Delta)).
引用
收藏
页码:521 / 540
页数:20
相关论文
共 26 条
  • [1] Artin M., 1976, DEFORMATION SINGULAR
  • [2] HODGE-DELIGNE THEORY
    AZNAR, VN
    [J]. INVENTIONES MATHEMATICAE, 1987, 90 (01) : 11 - 76
  • [3] Transferring homotopy commutative algebraic structures
    Cheng, Xue Zhi
    Getzler, Ezra
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) : 2535 - 2542
  • [4] Dupont J.L., 1978, Lecture Notes in Mathematics, V640
  • [5] SIMPLICIAL DE RHAM COHOMOLOGY AND CHARACTERISTIC CLASSES OF FLAT BUNDLES
    DUPONT, JL
    [J]. TOPOLOGY, 1976, 15 (03) : 233 - 245
  • [6] Fiorenza D., INFINITESIMAL UNPUB
  • [7] L∞ structures on mapping cones
    Fiorenza, Domenico
    Manetti, Marco
    [J]. ALGEBRA & NUMBER THEORY, 2007, 1 (03) : 301 - 330
  • [8] COSIMPLICIAL DGLAS IN DEFORMATION THEORY
    Fiorenza, Domenico
    Manetti, Marco
    Martinengo, Elena
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (06) : 2243 - 2260
  • [9] Lie theory for nilpotent L∞-algebras
    Getzler, Ezra
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (01) : 271 - 301
  • [10] Hinich V., 1997, INT MATH RES NOTICES, P223