Post-disaster recovery is a complex process in terms of measuring its progress after a disaster and understanding its components and influencing factors. During this process, disaster planners and governments need reliable information to make decisions towards building the affected region back to normal (pre-disaster), or even improved, conditions. Hence, it is essential to use methods to understand the dynamics/variables of the post-disaster recovery process, and rapid and cost-effective data and tools to monitor the process. Google Earth Engine (GEE) provides free access to vast amounts of remote sensing (RS) data and a powerful computing environment in a cloud platform, making it an attractive tool to analyze earth surface data. In this study we assessed the suitability of GEE to analyze and track recovery. To do so, we employed GEE to assess the recovery process over a three-year period after Typhoon Haiyan, which struck Leyte island, in the Philippines, in 2013. We developed an approach to (i) generate cloud and shadow-free image composites from Landsat 7 and 8 satellite imagery and produce land cover classification data using the Random Forest method, and (ii) generate damage and recovery maps based on post-classification change analysis. The method produced land cover maps with accuracies >88%. We used the model to produce damage and three time-step recovery maps for 62 municipalities on Leyte island. The results showed that most of the municipalities had recovered after three years in terms of returning to the pre-disaster situation based on the selected land cover change analysis. However, more analysis (e.g., functional assessment) based on detailed data (e.g., land use maps) is needed to evaluate the more complex and subtle socio-economic aspects of the recovery. The study showed that GEE has good potential for monitoring the recovery process for extensive regions. However, the most important limitation is the lack of very-high-resolution RS data that are critical to assess the process in detail, in particular in complex urban environments.
机构:
Nanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R ChinaNanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
Zhao, Qiang
Yu, Le
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China
Minist Educ, Ecol Field Stn East Asian Migratory Birds, Beijing 100084, Peoples R ChinaNanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
Yu, Le
Li, Xuecao
论文数: 0引用数: 0
h-index: 0
机构:
China Agr Univ, Coll Land Sci & Technol, Beijing 100083, Peoples R ChinaNanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
Li, Xuecao
Peng, Dailiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Digital Earth Sci, Aerosp Informat Res Inst, Beijing 100083, Peoples R ChinaNanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
Peng, Dailiang
Zhang, Yongguang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R ChinaNanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
Zhang, Yongguang
Gong, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Geog, Hong Kong, Peoples R China
Univ Hong Kong, Dept Earth Sci, Hong Kong, Peoples R ChinaNanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
机构:
NAS Ukraine, Dept Space Informat Technol & Syst, Space Res Inst, UA-03187 Kiev, UkraineNAS Ukraine, Dept Space Informat Technol & Syst, Space Res Inst, UA-03187 Kiev, Ukraine
Yailymov, Bohdan
Shelestov, Andrii
论文数: 0引用数: 0
h-index: 0
机构:
NAS Ukraine, Dept Space Informat Technol & Syst, Space Res Inst, UA-03187 Kiev, Ukraine
Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Math Modelling & Data Anal, UA-03056 Kiev, UkraineNAS Ukraine, Dept Space Informat Technol & Syst, Space Res Inst, UA-03187 Kiev, Ukraine
Shelestov, Andrii
Yailymova, Hanna
论文数: 0引用数: 0
h-index: 0
机构:
NAS Ukraine, Dept Space Informat Technol & Syst, Space Res Inst, UA-03187 Kiev, Ukraine
Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Math Modelling & Data Anal, UA-03056 Kiev, UkraineNAS Ukraine, Dept Space Informat Technol & Syst, Space Res Inst, UA-03187 Kiev, Ukraine
Yailymova, Hanna
Shumilo, Leonid
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USANAS Ukraine, Dept Space Informat Technol & Syst, Space Res Inst, UA-03187 Kiev, Ukraine