ABOUT THE EQUIVALENCE BETWEEN COMPLEX-VALUED AND REAL-VALUED FULLY CONNECTED NEURAL NETWORKS - APPLICATION TO POLINSAR IMAGES

被引:2
作者
Barrachina, J. A. [1 ,2 ]
Ren, C. [1 ]
Vieillard, G. [2 ]
Morisseau, C. [2 ]
Ovarlez, J-P [1 ,2 ]
机构
[1] Univ Paris Saclay, Cent Supelec, SONDRA, F-91192 Gif Sur Yvette, France
[2] Univ Paris Saclay, ONERA, DEMR, F-91120 Palaiseau, France
来源
2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2021年
关键词
Complex-Valued Neural Network; Real-Valued Neural Network; Polarimetric and Interferometric Synthetic Aperture Radar; CLASSIFICATION;
D O I
10.1109/MLSP52302.2021.9596542
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we provide an exhaustive statistical comparison between Complex-Valued MultiLayer Perceptron (CV-MLP) and Real-Valued MultiLayer Perceptron (RV-MLP) on Oberpfaffenhofen Polarimetric and Interferometric Synthetic Aperture Radar (PolInSAR) database. In order to compare both networks in a fair manner, the need to define the equivalence between the models arises. A novel definition for an equivalent Real-Valued Neural Network (RVNN) is proposed in terms of its real-valued trainable parameters that maintain the aspect ratio and analyze its dynamics. We show that CV-MLP gets a slightly better statistical performance for classification on the PolInSAR image than a capacity equivalent RV-MLP.
引用
收藏
页数:6
相关论文
共 29 条
[1]   COMPLEX-VALUED VS. REAL-VALUED NEURAL NETWORKS FOR CLASSIFICATION PERSPECTIVES: AN EXAMPLE ON NON-CIRCULAR DATA [J].
Barrachina, J. A. ;
Ren, C. ;
Morisseau, C. ;
Vieillard, G. ;
Ovarlez, J-P .
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, :2990-2994
[2]  
Barrachina J Agustin, 2020, NEGU93 CVNN 1 OFFICI
[3]  
Bassey Joshua, 2021, ARXIV PREPRINT ARXIV
[4]   Pixel-Wise PolSAR Image Classification via a Novel Complex-Valued Deep Fully Convolutional Network [J].
Cao, Yice ;
Wu, Yan ;
Zhang, Peng ;
Liang, Wenkai ;
Li, Ming .
REMOTE SENSING, 2019, 11 (22)
[5]  
Chambers J.M, 1983, GRAPHICAL METHODS DA, P5
[6]   Target Classification Using the Deep Convolutional Networks for SAR Images [J].
Chen, Sizhe ;
Wang, Haipeng ;
Xu, Feng ;
Jin, Ya-Qiu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4806-4817
[7]   A Novel Technique Based on Deep Learning and a Synthetic Target Database for Classification of Urban Areas in PolSAR Data [J].
De, Shaunak ;
Bruzzone, Lorenzo ;
Bhattacharya, Avik ;
Bovolo, Francesca ;
Chaudhuri, Subhasis .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (01) :154-170
[8]  
Glorot X., 2010, Proceedings of the thirteenth international conference on artificial intelligence and statistics, P249, DOI DOI 10.1109/LGRS.2016.2565705
[9]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[10]  
Guo YH, 2015, INT GEOSCI REMOTE SE, P1841, DOI 10.1109/IGARSS.2015.7326150