Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials

被引:68
作者
Jia, Xue [1 ,2 ]
Deng, Yanshuai [1 ,2 ]
Bao, Xin [1 ,2 ]
Yao, Honghao [1 ,2 ]
Li, Shan [1 ,2 ]
Li, Zhou [1 ,2 ]
Chen, Chen [1 ,2 ]
Wang, Xinyu [1 ,2 ]
Mao, Jun [1 ,2 ]
Cao, Feng [3 ]
Sui, Jiehe [4 ]
Wu, Junwei [1 ,2 ]
Wang, Cuiping [1 ,2 ,5 ]
Zhang, Qian [1 ,2 ,4 ]
Liu, Xingjun [1 ,2 ,4 ,5 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Inst Mat Genome & Big Data, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[4] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
[5] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PERFORMANCE; MECHANISMS; SC; HF;
D O I
10.1038/s41524-022-00723-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermoelectric materials can be potentially applied to waste heat recovery and solid-state cooling because they allow a direct energy conversion between heat and electricity and vice versa. The accelerated materials design based on machine learning has enabled the systematic discovery of promising materials. Herein we proposed a successful strategy to discover and design a series of promising half-Heusler thermoelectric materials through the iterative combination of unsupervised machine learning with the labeled known half-Heusler thermoelectric materials. Subsequently, optimized zT values of similar to 0.5 at 925 K for p-type Sc0.7Y0.3NiSb0.97Sn0.03 and similar to 0.3 at 778 K for n-type Sc0.65Y0.3Ti0.05NiSb were experimentally achieved on the same parent ScNiSb.
引用
收藏
页数:9
相关论文
共 51 条
[1]  
Bastanlar Y, 2014, METHODS MOL BIOL, V1107, P105, DOI 10.1007/978-1-62703-748-8_7
[2]   Nanograined Half-Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio High-Throughput Statistical Study [J].
Carrete, Jesus ;
Mingo, Natalio ;
Wang, Shidong ;
Curtarolo, Stefano .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (47) :7427-7432
[3]   Machine learning models for the lattice thermal conductivity prediction of inorganic materials [J].
Chen, Lihua ;
Huan Tran ;
Batra, Rohit ;
Kim, Chiho ;
Ramprasad, Rampi .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 170
[4]   Recent progress of half-Heusler for moderate temperature thermoelectric applications [J].
Chen, Shuo ;
Ren, Zhifeng .
MATERIALS TODAY, 2013, 16 (10) :387-395
[5]   Thermoelectric Performance of the Half-Heusler Phases RNiSb (R = Sc, Dy, Er, Tm, Lu): High Mobility Ratio between Majority and Minority Charge Carriers [J].
Ciesielski, K. ;
Synoradzki, K. ;
Veremchuk, I ;
Skokowski, P. ;
Szymanski, D. ;
Grin, Yu ;
Kaczorowski, D. .
PHYSICAL REVIEW APPLIED, 2020, 14 (05)
[6]   Charting the complete elastic properties of inorganic crystalline compounds [J].
de Jong, Maarten ;
Chen, Wei ;
Angsten, Thomas ;
Jain, Anubhav ;
Notestine, Randy ;
Gamst, Anthony ;
Sluiter, Marcel ;
Ande, Chaitanya Krishna ;
van der Zwaag, Sybrand ;
Plata, Jose J. ;
Toher, Cormac ;
Curtarolo, Stefano ;
Ceder, Gerbrand ;
Persson, Kristin A. ;
Asta, Mark .
SCIENTIFIC DATA, 2015, 2
[7]  
El A., 2021, J PHYS CHEM SOLIDS, V150
[8]   On the state of the art in machine learning: A personal review [J].
Flach, PA .
ARTIFICIAL INTELLIGENCE, 2001, 131 (1-2) :199-222
[9]   Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials [J].
Fu, Chenguang ;
Bai, Shengqiang ;
Liu, Yintu ;
Tang, Yunshan ;
Chen, Lidong ;
Zhao, Xinbing ;
Zhu, Tiejun .
NATURE COMMUNICATIONS, 2015, 6
[10]   Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach [J].
Furmanchuk, Al'ona ;
Saal, James E. ;
Doak, Jeff W. ;
Olson, Gregory B. ;
Choudhary, Alok ;
Agrawal, Ankit .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (04) :191-201