A Non-Fragile H∞ Output Feedback Controller for Uncertain Fuzzy Dynamical Systems with Multiple Time-Scales

被引:19
作者
Assawinchaichote, Wudhichai [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Dept Elect & Telecommun Engn, 126 Prachautits Rd, Bangkok 10140, Thailand
关键词
Fuzzy Control; Linear Matrix Inequality (LMI); Non-fragile H-infinity Output Feedback Control; Multiple Time-Scale Systems; SINGULARLY PERTURBED SYSTEMS; PARAMETRIC UNCERTAINTIES; STATE MEASUREMENTS; NONLINEAR-SYSTEMS; RICCATI EQUATION; CONTROL DESIGN; LMI APPROACH; STABILITY;
D O I
10.15837/ijccc.2012.1.1419
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper determines the designing of a non-fragile H-infinity output feedback controller for a class of nonlinear uncertain dynamical systems with multiple time-scales described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, we develop a non-fragile H-infinity output feedback controller which guarantees the L-2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value for this class of uncertain fuzzy dynamical systems with multiple time-scales. A numerical example is provided to illustrate the design developed in this paper.
引用
收藏
页码:8 / 19
页数:12
相关论文
共 29 条
[1]  
Anderson B.D., 2007, OPTIMAL CONTROL LINE
[2]  
ASSAWINCHAICHOT.W, 2004, IEEE T SIGNAL PROCES, V52, P579
[3]   H∞ fuzzy control design for nonlinear singularly perturbed systems with pole placement constraints:: An LMI approach [J].
Assawinchaichote, W ;
Nguang, SK .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :579-588
[4]  
CHEN CL, 1995, FUZZY SETS SYSTS, V57, P125
[5]  
FRIDMAN E, 2001, INT J ROBUS IN PRESS
[6]   THE RECURSIVE REDUCED-ORDER NUMERICAL-SOLUTION OF THE SINGULARLY PERTURBED MATRIX DIFFERENTIAL RICCATI EQUATION [J].
GRODT, T ;
GAJIC, Z .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) :751-754
[7]   H-INFINITY CONTROL OF SYSTEMS UNDER NORM BOUNDED UNCERTAINTIES IN ALL SYSTEM MATRICES [J].
GU, KQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (06) :1320-1322
[8]  
KOKOTOVIC P., 1986, Singular perturbation methods in control: analysis and design
[9]   SINGULAR PERTURBATIONS AND ORDER REDUCTION IN CONTROL-THEORY - OVERVIEW [J].
KOKOTOVIC, PV ;
OMALLEY, RE ;
SANNUTI, P .
AUTOMATICA, 1976, 12 (02) :123-132
[10]   Robust fuzzy control of nonlinear systems with parametric uncertainties [J].
Lee, HJ ;
Park, JB ;
Chen, G .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (02) :369-379