Solutions in closed form and as power series to the real Lorenz equations

被引:1
作者
Leach, PGL [1 ]
Flessas, GP
机构
[1] Univ Aegean, GEODYSYC, Dept Math, Karlovassi 83200, Samos, Greece
[2] Univ Natal, Sch Math & Stat Sci, ZA-4041 Durban, South Africa
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 30期
关键词
D O I
10.1088/0305-4470/34/30/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the method of the Lie theory of extended groups and for the parameter values sigma = 1/2, b = 1 and r = 0 we construct explicitly the general exact solution to the real Lorenz equations in ternas of Jacobian elliptic functions. In the context of our approach further possible completely integrable cases of the Lorenz system are discussed by considering the result of the Painleve analysis for sigma = 1, b = 2 and r = 1/9 and negative values of r, the latter case, r < 0, for b > 0 and c > 0 not following from the Painleve test. For other positive parameter values and in the form of appropriate power series we find some particular exact solutions which do not possess the Painleve property.
引用
收藏
页码:6013 / 6029
页数:17
相关论文
共 26 条
[1]  
Conte R., 1993, INTRO METHODS COMPLE, P49
[2]  
DEKLERK P, 1989, LIE PAINLEVE DERIVED
[3]   A COMPLETELY INTEGRABLE CASE IN THE COMPLEX LORENZ EQUATIONS [J].
FLESSAS, GP ;
LEACH, PGL .
PHYSICS LETTERS A, 1991, 154 (3-4) :127-130
[4]   AN ANALYSIS OF THE LORENZ EQUATIONS - STABLE EXACT-SOLUTIONS [J].
FLESSAS, GP .
PHYSICS LETTERS A, 1985, 108 (01) :4-6
[5]  
FLESSAS GP, 1988, P WORKSH FIN DIM INT, P161
[6]   LYAPUNOV-EXPONENT SPECTRA FOR THE LORENZ MODEL [J].
FROYLAND, J ;
ALFSEN, KH .
PHYSICAL REVIEW A, 1984, 29 (05) :2928-2931
[7]  
Gradshteyn I. S., 1980, TABLE INTEGRALS SERI
[8]   Connection between the existence of first integrals and the Painleve property in two-dimensional Lotka-Volterra and quadratic systems [J].
Hua, DD ;
Cairo, L ;
Feix, MR ;
Govinder, KS ;
Leach, PGL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1947) :859-880
[9]   Symmetry, singularities, and integrability in complex dynamics II. Rescaling and time-translation in two-dimensional systems [J].
Leach, PGL ;
Cotsakis, S ;
Flessas, GP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :587-608
[10]  
Leach PGL, 2000, J NONLINEAR MATH PHY, V7, P445, DOI 10.2991/jnmp.2000.7.4.4