Latent Multi-view Subspace Clustering

被引:448
|
作者
Zhang, Changqing [1 ]
Hu, Qinghua [1 ]
Fu, Huazhu [2 ]
Zhu, Pengfei [1 ]
Cao, Xiaochun [3 ,4 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China
[2] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
[3] Chinese Acad Sci, IIE, State Key Lab Informat Secur, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
来源
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) | 2017年
基金
中国国家自然科学基金;
关键词
LOW-RANK; ALGORITHM;
D O I
10.1109/CVPR.2017.461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel Latent Multi-view Subspace Clustering (LMSC) method, which clusters data points with latent representation and simultaneously explores underlying complementary information from multiple views. Unlike most existing single view subspace clustering methods that reconstruct data points using original features, our method seeks the underlying latent representation and simultaneously performs data reconstruction based on the learned latent representation. With the complementarity of multiple views, the latent representation could depict data themselves more comprehensively than each single view individually, accordingly makes subspace representation more accurate and robust as well. The proposed method is intuitive and can be optimized efficiently by using the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) algorithm. Extensive experiments on benchmark datasets have validated the effectiveness of our proposed method.
引用
收藏
页码:4333 / 4341
页数:9
相关论文
共 50 条
  • [21] Scalable Affine Multi-view Subspace Clustering
    Wanrong Yu
    Xiao-Jun Wu
    Tianyang Xu
    Ziheng Chen
    Josef Kittler
    Neural Processing Letters, 2023, 55 : 4679 - 4696
  • [22] Diverse and Common Multi-View Subspace Clustering
    Lu, Zhiqiang
    Wu, Songsong
    Liu, Yurong
    Gao, Guangwei
    Wu, Fei
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 878 - 882
  • [23] Feature concatenation multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Li, Zhongyu
    Pang, Shanmin
    Wang, Jun
    Li, Yaochen
    NEUROCOMPUTING, 2020, 379 : 89 - 102
  • [24] Efficient Orthogonal Multi-view Subspace Clustering
    Chen, Man-Sheng
    Wang, Chang-Dong
    Huang, Dong
    Lai, Jian-Huang
    Yu, Philip S.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 127 - 135
  • [25] Consistent and Specific Multi-View Subspace Clustering
    Luo, Shirui
    Zhang, Changqing
    Zhang, Wei
    Cao, Xiaochun
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3730 - 3737
  • [26] Generalized Multi-View Collaborative Subspace Clustering
    Lan, Mengcheng
    Meng, Min
    Yu, Jun
    Wu, Jigang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3561 - 3574
  • [27] Multi-view Subspace Clustering on Topological Manifold
    Huang, Shudong
    Wu, Hongjie
    Ren, Yazhou
    Tsang, Ivor W.
    Xu, Zenglin
    Feng, Wentao
    Lv, Jiancheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [28] Multi-view Subspace Clustering for Face Images
    Zhang, Xin
    Dinh Phung
    Venkatesh, Svetha
    Duc-Son Pham
    Liu, Wanquan
    2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 555 - 561
  • [29] Binary multi-view sparse subspace clustering
    Jianxi Zhao
    Yang Li
    Neural Computing and Applications, 2023, 35 : 21751 - 21770
  • [30] Split Multiplicative Multi-View Subspace Clustering
    Yang, Zhiyong
    Xu, Qianqian
    Zhang, Weigang
    Cao, Xiaochun
    Huang, Qingming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 5147 - 5160