The energy eigenvalues of the Kratzer potential in the presence of a magnetic field

被引:35
作者
Aygun, M. [1 ]
Bayrak, O. [2 ]
Boztosun, I. [2 ]
Sahin, Y. [3 ]
机构
[1] Bitlis Eren Univ, Dept Phys, Fac Arts & Sci, TR-13000 Bitlis, Turkey
[2] Akdeniz Univ, Dept Phys, Fac Sci, TR-07058 Antalya, Turkey
[3] Ataturk Univ, Dept Phys, Fac Sci, TR-25240 Erzurum, Turkey
关键词
ASYMPTOTIC ITERATION METHOD; 2-DIMENSIONAL HYDROGENIC DONOR; ARBITRARY STRENGTH; QUANTUM DOTS; SCREENED DONOR; SPECTRUM; ATOM; COMPUTATION; OSCILLATOR; STATE;
D O I
10.1140/epjd/e2011-20319-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Two dimensional solution of the Schrodinger equation for the Kratzer potential with and without the presence of a constant magnetic field is investigated within the framework of the asymptotic iteration method. The energy eigenvalues are analytically obtained for the absence of the magnetic field case. However, in the presence of a constant magnetic field, the energy eigenvalues are calculated numerically using the same method. The results obtained by using different Larmor frequencies and potential parameters are compared with the results of the absence of the magnetic field case (omega(L) = 0). Effect of the magnetic field on the energy eigenvalues of the Kratzer potential is precisely presented.
引用
收藏
页数:5
相关论文
共 33 条
[1]  
[Anonymous], 1988, Special functions of mathematical physics
[2]   Solution of the radial Schrodinger equation for the potential family V(r)=A/r2-B/r+Crκ using the asymptotic iteration method [J].
Aygun, M. ;
Bayrak, O. ;
Boztosun, I. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (03) :537-544
[3]   EXAMINATION OF V(r) = -z/r plus gr plus λr2 POTENTIAL IN THE PRESENCE OF MAGNETIC FIELD [J].
Aygun, M. ;
Sahin, Y. ;
Boztosun, I. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (07) :1349-1356
[4]   Exact analytical solutions to the Kratzer potential by the asymptotic iteration method [J].
Bayrak, O. ;
Boztosun, I. ;
Ciftci, H. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (03) :540-544
[5]   Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method [J].
Bayrak, O. ;
Boztosun, I. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :6955-6963
[6]   Two-electron quantum dots in magnetic field [J].
Blanter, YM ;
Kaputkina, NE ;
Lozovik, YE .
PHYSICA SCRIPTA, 1996, 54 (05) :539-541
[7]  
Chakraborty T., 1992, COMMENTS CONDENS MAT, V16
[8]   Asymptotic iteration method for eigenvalue problems [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (47) :11807-11816
[9]  
COOPER F, 1995, PHYS REP, V251, P268
[10]   NONLOCAL DYNAMIC-RESPONSE AND LEVEL-CROSSINGS IN QUANTUM-DOT STRUCTURES [J].
DEMEL, T ;
HEITMANN, D ;
GRAMBOW, P ;
PLOOG, K .
PHYSICAL REVIEW LETTERS, 1990, 64 (07) :788-791