The need for quantification of uncertainty in artificial intelligence for clinical data analysis: increasing the level of trust in the decision-making process

被引:14
作者
Abdar, Moloud [1 ]
Khosravi, Abbas [1 ]
Islam, Sheikh Mohammed Shariful [2 ]
Acharya, U. Rajendra [3 ,4 ,5 ]
Vasilakos, Athanasios V. [6 ,7 ]
机构
[1] Deakin Univ, Inst Intelligent Syst Res & Innovat, Geelong, Vic 3216, Australia
[2] Deakin Univ, Sch Exercise & Nutr Sci, Inst Phys Act & Nutr, Melbourne, Vic 3125, Australia
[3] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[4] Singapore Univ Social Sci, Sch Sci & Technol, Dept Biomed Engn, Singapore 599491, Singapore
[5] Asia Univ, Dept Biomed Informat & Med Engn, Taichung 41354, Taiwan
[6] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Peoples R China
[7] Univ Agder, Ctr AI Res, N-4879 Grinstad, Norway
来源
IEEE SYSTEMS MAN AND CYBERNETICS MAGAZINE | 2022年 / 8卷 / 03期
基金
澳大利亚研究理事会;
关键词
DIAGNOSTIC ERRORS; BURDEN;
D O I
10.1109/MSMC.2022.3150144
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Data handling - Decision making - Decision support systems - Information analysis - Uncertainty analysis
引用
收藏
页码:28 / 40
页数:13
相关论文
共 95 条
[1]   BARF: A new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification [J].
Abdar, Moloud ;
Fahami, Mohammad Amin ;
Chakrabarti, Satarupa ;
Khosravi, Abbas ;
Plawiak, Pawel ;
Acharya, U. Rajendra ;
Tadeusiewicz, Ryszard ;
Nahavandi, Saeid .
INFORMATION SCIENCES, 2021, 577 (577) :353-378
[2]   Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning [J].
Abdar, Moloud ;
Samami, Maryam ;
Mahmoodabad, Sajjad Dehghani ;
Doan, Thang ;
Mazoure, Bogdan ;
Hashemifesharaki, Reza ;
Liu, Li ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
[3]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[4]   Energy choices in Alaska: Mining people's perception and attitudes from geotagged tweets [J].
Abdar, Moloud ;
Basiri, Mohammad Ehsan ;
Yin, Junjun ;
Habibnezhad, Mahmoud ;
Chi, Guangqing ;
Nemati, Shahla ;
Asadi, Somayeh .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 124 (124)
[5]  
Abdar Moloud, 2021, ARXIV
[6]  
Ahn H., 2019, ARXIV
[7]   Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles [J].
Aradi, Szilard .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) :740-759
[8]   A novel method for sentiment classification of drug reviews using fusion of deep and machine learning techniques [J].
Basiri, Mohammad Ehsan ;
Abdar, Moloud ;
Cifci, Mehmet Akif ;
Nemati, Shahla ;
Acharya, U. Rajendra .
KNOWLEDGE-BASED SYSTEMS, 2020, 198
[9]   The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database [J].
Benjamens, Stan ;
Dhunnoo, Pranavsingh ;
Mesko, Bertalan .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[10]  
Bhatt U., 2020, ARXIV