Using fuzzy logic to determine the vulnerability of marine species to climate change

被引:68
作者
Jones, Miranda C. [1 ]
Cheung, William W. L. [1 ]
机构
[1] Univ British Columbia, Inst Oceans & Fisheries, Changing Ocean Res Unit, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
climate change; fishes; fuzzy logic; invertebrates; marine; ocean acidification; risk of impacts; vulnerability; EXTINCTION VULNERABILITY; IMPACTS; RISK; FISHERIES; SENSITIVITY; TRAITS;
D O I
10.1111/gcb.13869
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species-specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 +/- 19 SD and 66 +/- 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the "business-as-usual" greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large-bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks of exploited marine species using publicly and readily available information.
引用
收藏
页码:E719 / E731
页数:13
相关论文
共 41 条
[21]   Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios [J].
Gattuso, J-P ;
Magnan, A. ;
Bille, R. ;
Cheung, W. W. L. ;
Howes, E. L. ;
Joos, F. ;
Allemand, D. ;
Bopp, L. ;
Cooley, S. R. ;
Eakin, C. M. ;
Hoegh-Guldberg, O. ;
Kelly, R. P. ;
Poertner, H-O ;
Rogers, A. D. ;
Baxter, J. M. ;
Laffoley, D. ;
Osborn, D. ;
Rankovic, A. ;
Rochette, J. ;
Sumaila, U. R. ;
Treyer, S. ;
Turley, C. .
SCIENCE, 2015, 349 (6243)
[22]   Extinction vulnerability of coral reef fishes [J].
Graham, Nicholas A. J. ;
Chabanet, Pascale ;
Evans, Richard D. ;
Jennings, Simon ;
Letourneur, Yves ;
MacNeil, M. Aaron ;
McClanahan, Tim R. ;
Ohman, Marcus C. ;
Polunin, Nicholas V. C. ;
Wilson, Shaun K. .
ECOLOGY LETTERS, 2011, 14 (04) :341-348
[23]   A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast US Continental Shelf [J].
Hare, Jonathan A. ;
Morrison, Wendy E. ;
Nelson, Mark W. ;
Stachura, Megan M. ;
Teeters, Eric J. ;
Griffis, Roger B. ;
Alexander, Michael A. ;
Scott, James D. ;
Alade, Larry ;
Bell, Richard J. ;
Chute, Antonie S. ;
Curti, Kiersten L. ;
Curtis, Tobey H. ;
Kircheis, Daniel ;
Kocik, John F. ;
Lucey, Sean M. ;
McCandless, Camilla T. ;
Milke, Lisa M. ;
Richardson, David E. ;
Robillard, Eric ;
Walsh, Harvey J. ;
McManus, M. Conor ;
Marancik, Katrin E. ;
Griswold, Carolyn A. .
PLOS ONE, 2016, 11 (02)
[24]   Global reductions in seafloor biomass in response to climate change [J].
Jones, Daniel O. B. ;
Yool, Andrew ;
Wei, Chih-Lin ;
Henson, Stephanie A. ;
Ruhl, Henry A. ;
Watson, Reg A. ;
Gehlen, Marion .
GLOBAL CHANGE BIOLOGY, 2014, 20 (06) :1861-1872
[25]   Multi-model ensemble projections of climate change effects on global marine biodiversity [J].
Jones, Miranda C. ;
Cheung, William W. L. .
ICES JOURNAL OF MARINE SCIENCE, 2015, 72 (03) :741-752
[26]   Modelling commercial fish distributions: Prediction and assessment using different approaches [J].
Jones, Miranda C. ;
Dye, Stephen R. ;
Pinnegar, John K. ;
Warren, Rachel ;
Cheung, William W. L. .
ECOLOGICAL MODELLING, 2012, 225 :133-145
[27]   Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming [J].
Kroeker, Kristy J. ;
Kordas, Rebecca L. ;
Crim, Ryan ;
Hendriks, Iris E. ;
Ramajo, Laura ;
Singh, Gerald S. ;
Duarte, Carlos M. ;
Gattuso, Jean-Pierre .
GLOBAL CHANGE BIOLOGY, 2013, 19 (06) :1884-1896
[28]   Quantifying the sensitivity of arctic marine mammals to climate-induced habitat change [J].
Laidre, Kristin L. ;
Stirling, Ian ;
Lowry, Lloyd F. ;
Wiig, Oystein ;
Heide-Jorgensen, Mads Peter ;
Ferguson, Steven H. .
ECOLOGICAL APPLICATIONS, 2008, 18 (02) :S97-S125
[29]   Projected change in global fisheries revenues under climate change [J].
Lam, Vicky W. Y. ;
Cheung, William W. L. ;
Reygondeau, Gabriel ;
Sumaila, U. Rashid .
SCIENTIFIC REPORTS, 2016, 6
[30]   Understanding and responding to danger from climate change: the role of key risks in the IPCC AR5 [J].
Mach, Katharine J. ;
Mastrandrea, Michael D. ;
Bilir, T. Eren ;
Field, Christopher B. .
CLIMATIC CHANGE, 2016, 136 (3-4) :427-444