TRAVELING WAVES AND HOMOGENEOUS FRAGMENTATION

被引:11
作者
Berestycki, J. [1 ]
Harris, S. C. [2 ]
Kyprianou, A. E. [2 ]
机构
[1] Univ Paris 06, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
Fisher-Kolmogorov-Petrovskii-Piscounov equation; traveling waves; homogeneous fragmentation processes; product martingales; additive martingales; spine decomposition; stopping lines; FIXED-POINTS; MARTINGALE CONVERGENCE; EQUATION; BEHAVIOR;
D O I
10.1214/10-AAP733
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We formulate the notion of the classical Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) reaction diffusion equation associated with a homogeneous conservative fragmentation process and study its traveling waves. Specifically, we establish existence, uniqueness and asymptotics. In the spirit of classical works such as McKean [Comm. Pure Appl. Math. 28 (1975) 323-331] and [Comm. Pure Appl. Math. 29 (1976) 553-554], Neveu [In Seminar on Stochastic Processes (1988) 223-242 Birkh user] and Chauvin [Ann. Probab. 19 (1991) 1195-1205], our analysis exposes the relation between traveling waves and certain additive and multiplicative martingales via laws of large numbers which have been previously studied in the context of Crump-Mode-Jagers (CMJ) processes by Nerman [Z. Wahrsch. Verw. Gebiete 57 (1981) 365-395] and in the context of fragmentation processes by Bertoin and Martinez [Adv. in Appl. Probab. 37 (2005) 553-570] and Harris, Knobloch and Kyprianou [Ann. Inst. H. Poincare Probab. Statist. 46 (2010) 119-134]. The conclusions and methodology presented here appeal to a number of concepts coming from the theory of branching random walks and branching Brownian motion (cf. Harris [Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 503-517] and Biggins and Kyprianou [Electr. J. Probab. 10 (2005) 609-631]) showing their mathematical robustness even within the context of fragmentation theory.
引用
收藏
页码:1749 / 1794
页数:46
相关论文
共 35 条
[1]  
[Anonymous], 1968, J. Math. Kyoto Univ.
[2]  
[Anonymous], 1997, CLASSICAL MODERN BRA
[3]  
[Anonymous], 1968, J. Math. Kyoto Univ., DOI DOI 10.1215/KJM/1250524137
[4]  
[Anonymous], 2002, ESAIM Probab. Stat., DOI DOI 10.1051/PS:2002009
[5]  
[Anonymous], 1937, Bull. Univ. Mosc. Ser. Int. A, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[6]  
[Anonymous], 2006, INTRO LECT FLUCTUATI
[7]  
[Anonymous], 1969, Journal of Mathematics of Kyoto University
[8]   Multifractal spectra of fragmentation processes [J].
Berestycki, J .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (3-4) :411-430
[9]   Fragmentation energy [J].
Bertoin, J ;
Martínez, S .
ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) :553-570
[10]   Discretization methods for homogeneous fragmentations [J].
Bertoin, J ;
Rouault, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :91-109