The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs

被引:19
作者
Janko, Z [1 ]
机构
[1] Univ Heidelberg, Inst Math, D-6900 Heidelberg, Germany
关键词
symmetric design; Bush-type Hadamard matrix; twin design; Siamese twin design; balanced generalized weighing matrix;
D O I
10.1006/jcta.2000.3166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonsymmetric Bush-type Hadamard matrix of order 36 is constructed which leads to two, new infinite classes of symmetric designs with parameters: v = 36(25(m) + 25(m-1) + ... + 25 + 1), k = 15(25)(m), lambda = 6(25)(m), and v = 36(49(m) + 49(m-1) + ... + 49 + 1), k = 21(49)(m), lambda = (49)(m), where ni is any positive integer. (C) 2001 Academic Press.
引用
收藏
页码:360 / 364
页数:5
相关论文
共 6 条
  • [1] Bush K. A., 1971, J. Combinatorial Theory Ser. A, V11, P38
  • [2] BUSSEMAKER FC, IN PRESS DES CODES C
  • [3] JANKO Z, UNPUB BUSH TYPE HADA
  • [4] JANKO Z, UNPUB EXISTENCE BUSH
  • [5] Perfect codes and balanced generalized weighing matrices
    Jungnickel, D
    Tonchev, VD
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (03) : 294 - 300
  • [6] KHARAGHANI H, 2000, ELECT J COMBIN, P7