Mode-dependent loss and gain: statistics and effect on mode-division multiplexing

被引:240
作者
Ho, Keang-Po [1 ]
Kahn, Joseph M. [2 ]
机构
[1] Silicon Image, Sunnyvale, CA 94085 USA
[2] Stanford Univ, Dept Elect Engn, EL Ginzton Lab, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
COHERENT OPTICAL OFDM; MULTIMODE FIBER LINKS; ENHANCED PHASE NOISE; RANDOM MATRICES; RANDOM-VARIABLES; LIMIT LAWS; PRODUCTS; SYSTEMS; DISPERSION; TRANSMISSION;
D O I
10.1364/OE.19.016612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In multimode fiber transmission systems, mode-dependent loss and gain (collectively referred to as MDL) pose fundamental performance limitations. In the regime of strong mode coupling, the statistics of MDL (expressed in decibels or log power gain units) can be described by the eigenvalue distribution of zero-trace Gaussian unitary ensemble in the small-MDL region that is expected to be of interest for practical long-haul transmission. Information-theoretic channel capacities of mode-division-multiplexed systems in the presence of MDL are studied, including average and outage capacities, with and without channel state information. (C) 2011 Optical Society of America
引用
收藏
页码:16612 / 16635
页数:24
相关论文
共 62 条
[1]  
[Anonymous], 1998, SORTING SEARCHING
[2]  
[Anonymous], 1993, SPRINGER SERIES SOLI, DOI DOI 10.1007/978-3-642-84942-8
[3]  
[Anonymous], 1999, Springer Series in Statistics, DOI DOI 10.1007/978-1-4612-1478-6
[4]  
[Anonymous], 2004, RANDOM MATRIX THEORY
[5]  
[Anonymous], 1996, J HOPKINS STUDIES MA
[6]   LIMIT THEOREMS FOR NON-COMMUTATIVE OPERATIONS .1. [J].
BELLMAN, R .
DUKE MATHEMATICAL JOURNAL, 1954, 21 (03) :491-500
[7]   Exploitation of optical interconnects in future server architectures [J].
Benner, AF ;
Ignatowski, M ;
Kash, JA ;
Kuchta, DM ;
Ritter, MB .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2005, 49 (4-5) :755-775
[8]   Limit laws for products of free and independent random variables [J].
Bercovici, H ;
Pata, V .
STUDIA MATHEMATICA, 2000, 141 (01) :43-52
[9]   CENTRAL LIMIT-THEOREM FOR PRODUCTS OF RANDOM MATRICES [J].
BERGER, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 285 (02) :777-803
[10]  
BULOW H, 2010, P OSA TOP M ACC NETW