Automorphism groups of some generalized Cayley graphs

被引:0
作者
Alinejad, Mohsen [1 ]
Khashyarmanesh, Kazem [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159-91775, Mashhad, Razavi Khorasan, Iran
关键词
Automorphism group; Clique number; Cayley graph;
D O I
10.1007/s12215-018-00393-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity element. Graph Gamma(n)(R) is defined with vertex set R-n\{0} and two distinct vertices X and Y are adjacent if and only if there exists an nxn lower triangular matrix A with non-zero diagonal entries such that AX(T) = Y-T or AY(T) = X-T. By B-T, we mean transpose of matrix B. If R is a semigroup with respect to multiplication and n = 1, then Gamma(1)(R) is the undirected Cayley graph. In this paper, a prime number p, we find the clique number and automorphism group of Gamma(n)(R), where R = Z(p2) or R = Z(p3).
引用
收藏
页码:167 / 174
页数:8
相关论文
empty
未找到相关数据