Modification of high performance training algorithm for solving singular perturbation partial differential equations with cubic convergence

被引:6
作者
Al-Abrahemee, Khalid Mindeel Mohammed [1 ]
机构
[1] Univ Al Qadisiyhah, Coll Educ, Dept Math, Al Qadisiyhah, Iraq
关键词
Partial differential equations; Neural network; Lemberg Marquardt; Singularly perturbed; Cubic convergence; LEVENBERG-MARQUARDT METHOD; NONLINEAR EQUATIONS;
D O I
10.1080/09720502.2021.2001136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we used the update a neural network for solve singularly perturbed partial differential equations (SPPDLs) that have been singularly disturbed. We dealt with the modernization of artiftial networks by updating the most important types of high-performance training. For nonlinear equations, the modified Levenberg-Marquardt method (MLMM) is used, in which not only an LM step but also an approximation LM step is generated at each iteration. When applying the trust region technique, a new type of projected reduction for the merit function is created to assure global convergence of the new method. The modified LM method's cubic convergence is demonstrated under the local error bound condition, which is weaker than nonsingularity. The numerical results demonstrate that the new method is quite efficient and might save numerous Jacobian calculations.
引用
收藏
页码:2035 / 2047
页数:13
相关论文
共 17 条
  • [1] Local convergence of the Levenberg-Marquardt method under Holder metric subregularity
    Ahookhosh, Masoud
    Aragon Artacho, Francisco J.
    Fleming, Ronan M. T.
    Vuong, Phan T.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2771 - 2806
  • [2] Alymkulov Keldibay., 2014, UNIVERSAL J APPL MAT, V2, P119, DOI [10.13189/ujam.2014.020301, DOI 10.13189/UJAM.2014.020301]
  • [3] Algorithm for computing differential char sets efficiently
    Cancan, Murat
    Afzal, Farkhanda
    Maqbool, Ayesha
    Afzal, Deeba
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (06) : 1203 - 1216
  • [4] Fan JY, 2012, MATH COMPUT, V81, P447
  • [5] Modified eccentric descriptors of crystal cubic carbon
    Imran, Muhammad
    Naeem, Muhammad
    Baig, Abdul Qadair
    Siddiqui, Muhammad Kamran
    Zahid, Manzoor A.
    Gao, Wei
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (07) : 1215 - 1228
  • [6] Kanzow C, 2001, APPL OPTIM, V50, P179
  • [7] Kelley C. T, 1999, SIAM J. Optim, DOI 10.1137/1.9781611970920
  • [8] Levenberg K., 1944, Q Appl Math, V2, P164, DOI [DOI 10.1090/QAM/10666, 10.1090/QAM/10666]
  • [9] AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS
    MARQUARDT, DW
    [J]. JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02): : 431 - 441
  • [10] Mohammed, 2016, MATH THEORY MODELING, V6, P1, DOI [10.7176/MTM, DOI 10.7176/MTM]