Robust Adaptive Fuzzy Control for a Class of Uncertain Nonlinear Fractional Systems

被引:1
作者
Khettab, Khatir [1 ]
Bensafia, Yassine [2 ]
Ladaci, Samir [3 ,4 ]
机构
[1] Mohamed Boudiaf Univ Msila, Dept Elect Engn, Msila 28000, Algeria
[2] Bouira Univ, Dept Elect Engn, Bouira 10000, Algeria
[3] Natl Polytech Sch Constantine, EEA Dept, O 447, Constantine 25000, Algeria
[4] Univ Mentouri Constantine, SP Lab Lab, Route Ain El Bey, Constantine 25000, Algeria
来源
RECENT ADVANCES IN ELECTRICAL ENGINEERING AND CONTROL APPLICATIONS | 2017年 / 411卷
关键词
Fractional adaptive fuzzy control; Fractional systems; Robustness; Numerical approximation; Synchronization; Lyapunov stability; ORDER CHAOTIC SYSTEMS; DIFFERENTIAL-EQUATIONS; DYNAMICAL-SYSTEMS; SISO SYSTEMS; CHUAS SYSTEM; SYNCHRONIZATION; OBSERVER;
D O I
10.1007/978-3-319-48929-2_21
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a novel fuzzy logic controller (FLC) equipped with an adaptive algorithm to achieve synchronization performance for tow fractional chaotic systems. By introducing the fuzzy control design and robustness tracking approach, a desired synchronization error can be attenuated to a prescribed level, even in the presence of the high level of uncertainties and noisy training data. Based on recent works of Lin et al. about synchronization of uncertain fractional order chaotic systems, the main contribution of this work is to enhance the control system behavior using the numerical approximation method of Grunwald-Letnikov. Simulation results clearly showed the efficiency of the proposed control scheme.
引用
收藏
页码:276 / 294
页数:19
相关论文
共 34 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]  
[Anonymous], 2001, APPL FRACTIONAL CALC
[4]  
Arena P., 1997, ECCTD '97. Proceedings of the 1997 European Conference on Circuit Theory and Design, P1259
[5]  
Bensafia Y, 2015, INT J INNOV COMPUT I, V11, P2013
[6]   FUZZY-LOGIC CONTROLLERS ARE UNIVERSAL APPROXIMATORS [J].
CASTRO, JL .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (04) :629-635
[7]  
Chen BS, 1996, IEEE T FUZZY SYST, V4, P32, DOI 10.1109/91.481843
[8]   Chaos synchronization of the fractional Lu system [J].
Deng, WH ;
Li, CP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) :61-72
[9]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[10]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52