Construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media

被引:67
作者
Cohen, G
Joly, P
机构
[1] Inst. Natl. Rech. Info. en Automat., Domaine de Voluceau-Rocquencourt, 78153 Le Chesnay Cédex
关键词
wave equation; finite differences; L(2)-stability; reflected and transmitted waves;
D O I
10.1137/S0036142993246445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we construct and analyse a family of finite difference schemes for the acoustic wave equation with variable coefficients. These schemes are fourth-order accurate in space and time in the case of smooth media and are designed to remain stable and ''optimal'' for reflection-transmission phenomena in the case of discontinuous coefficients. Together with a detailed mathematical study, various numerical results are presented.
引用
收藏
页码:1266 / 1302
页数:37
相关论文
共 18 条
[1]   ACCURACY OF FINITE-DIFFERENCE MODELING OF ACOUSTIC-WAVE EQUATION [J].
ALFORD, RM ;
KELLY, KR ;
BOORE, DM .
GEOPHYSICS, 1974, 39 (06) :834-842
[2]   NUMERICAL DIFFRACTION BY A UNIFORM GRID [J].
BAMBERGER, A ;
GUILLOT, JC ;
JOLY, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (04) :753-783
[3]  
BAMBERGER A, 1980, RR41 INRIA
[4]  
BAYLISS A, 1986, B SEISMOL SOC AM, V76, P1115
[5]  
BELYTSCHKO T, 1982, INT J NUMER METH ENG, V18, P11
[6]  
COHEN G, 1987, P 6 IMACS INT S COMP, P23
[7]  
COHEN G, 1988, P 58 SEG ANN INT M A
[8]   THE APPLICATION OF HIGH-ORDER DIFFERENCING TO THE SCALAR WAVE-EQUATION [J].
DABLAIN, MA .
GEOPHYSICS, 1986, 51 (01) :54-66
[9]  
DUONG TH, 1990, RR1333 INRIA
[10]  
GOLDBERG M, 1985, LECT APPL MATH, V22, P177