Construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media

被引:66
作者
Cohen, G
Joly, P
机构
[1] Inst. Natl. Rech. Info. en Automat., Domaine de Voluceau-Rocquencourt, 78153 Le Chesnay Cédex
关键词
wave equation; finite differences; L(2)-stability; reflected and transmitted waves;
D O I
10.1137/S0036142993246445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we construct and analyse a family of finite difference schemes for the acoustic wave equation with variable coefficients. These schemes are fourth-order accurate in space and time in the case of smooth media and are designed to remain stable and ''optimal'' for reflection-transmission phenomena in the case of discontinuous coefficients. Together with a detailed mathematical study, various numerical results are presented.
引用
收藏
页码:1266 / 1302
页数:37
相关论文
共 18 条
  • [1] ACCURACY OF FINITE-DIFFERENCE MODELING OF ACOUSTIC-WAVE EQUATION
    ALFORD, RM
    KELLY, KR
    BOORE, DM
    [J]. GEOPHYSICS, 1974, 39 (06) : 834 - 842
  • [2] NUMERICAL DIFFRACTION BY A UNIFORM GRID
    BAMBERGER, A
    GUILLOT, JC
    JOLY, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (04) : 753 - 783
  • [3] BAMBERGER A, 1980, RR41 INRIA
  • [4] BAYLISS A, 1986, B SEISMOL SOC AM, V76, P1115
  • [5] BELYTSCHKO T, 1982, INT J NUMER METH ENG, V18, P11
  • [6] COHEN G, 1987, P 6 IMACS INT S COMP, P23
  • [7] COHEN G, 1988, P 58 SEG ANN INT M A
  • [8] THE APPLICATION OF HIGH-ORDER DIFFERENCING TO THE SCALAR WAVE-EQUATION
    DABLAIN, MA
    [J]. GEOPHYSICS, 1986, 51 (01) : 54 - 66
  • [9] DUONG TH, 1990, RR1333 INRIA
  • [10] GOLDBERG M, 1985, LECT APPL MATH, V22, P177