Nonsmooth continuous-time optimization problems: Necessary conditions

被引:19
作者
Brandao, AJV [1 ]
Rojas-Medar, MA
Silva, GN
机构
[1] UFOP, ICEB, Dept Matemat, Ouro Preto, MG, Brazil
[2] Univ Estadual Campinas, IMECC, Dept Matemat Aplicada, BR-13081970 Campinas, SP, Brazil
[3] Univ Estadual Paulista, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
continuous nonlinear programming; necessary conditions; nonsmooth optimization;
D O I
10.1016/S0898-1221(01)00112-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Lipschitz continuous-time nonlinear optimization problems and provide first-order necessary optimality conditions of both Fritz John and Karush-Kuhn-Tucker types. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1477 / 1486
页数:10
相关论文
共 24 条
[11]  
Hormander L., 1955, ARK MAT, V3, P181, DOI 10.1007/BF02589354
[12]   A CLASS OF CONTINUOUS LINEAR PROGRAMMING PROBLEMS [J].
LEVINSON, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 16 (01) :73-&
[13]   A duality theory for separated continuous linear programs [J].
Pullan, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (03) :931-965
[14]   AN ALGORITHM FOR A CLASS OF CONTINUOUS LINEAR-PROGRAMS [J].
PULLAN, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (06) :1558-1577
[15]  
REILAND TW, 1980, J MATH ANAL APPL, P578
[16]   Nonsmooth continuous-time optimization problems: Sufficient conditions [J].
Rojas-Medar, MA ;
Brandao, AJV ;
Silva, GN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (02) :305-318
[17]   DUALITY IN INFINITE-DIMENSIONAL MATHEMATICAL-PROGRAMMING - CONVEX INTEGRAL FUNCTIONALS [J].
SCOTT, CH ;
JEFFERSON, TR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (01) :251-261
[18]  
Tyndal W.F., 1965, SIAM J APPL MATH, V13, P644
[19]   AN EXTENDED DUALITY THEOREM FOR CONTINUOUS LINEAR PROGRAMMING PROBLEMS [J].
TYNDALL, WF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1967, 15 (05) :1294-&
[20]   DUALITY IN CONTINUOUS-TIME HOMOGENEOUS PROGRAMMING [J].
ZALMAI, GJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 111 (02) :433-448